

Livewire Control Protocol on the Z/IP ONE
10 August 2017, Cleveland Ohio, USA

Users of Telos’ earlier codec products may remember using the telnet command line interface to

automate control of the unit. While this worked well for many purposes, the telnet interface was

always intended for interactive control, and was not always maintained as an application programming

interface.

Remote control on the Z/IP ONE is primarily accomplished using Livewire Control Protocol (LWCP). This

is a protocol shared by many Livewire-enabled products, though there are objects unique to the Z/IP

ONE.

LWCP basics
Livewire control protocol is an entirely text-based protocol operating on a raw socket, TCP 4010.

Although it is intended for use as a scripted, automated control interface, it can be used interactively

for development, testing, or for simple tasks. Here are the settings that you would use if connecting via

the popular terminal program PuTTY:

LWCP is a fully defined protocol, and the latest reference document is attached below. The latest Z/IP

ONE implementation document is also attached.

LWCP Reference
v.13

LWCP for the Z/IP
ONE v1.5

At its most basic, you have a set of verbs, which work on options, given parameters. For example get supv

state means that you want to get the state parameters from the supervisor object. Similarly, login unit

user=”user”,pwd=”” sends a login request to the “unit” object with a username of “user” and no password.

2 Tech Tip – 10 August 2017

Examples
These are technical documents, but the protocol looks relatively simple in practice. Here is a very short

sample sequence:

get supv state

indi supv state="WORKING",version="4.0.1b",device_type="ZIPOne",hwversion=2 $status=OK
login unit user="user",pwd="" $ack

ack unit $status=OK

get phonebook buddylist
indi phonebook buddylist=%BeginEncap%<list><buddy><name>ZephyrIP10</name>

<group>public</group>

<pwd>public</pwd>
<nick>Telos Line</nick>

<type>tscp</type>

<panic>0</panic>
<status>online</status>

<redial>global</redial>

</buddy>

<buddy><name>euroline</name>

<group>public</group>

<pwd>public</pwd>
<nick>Euro Line</nick>

<type>tscp</type>

<panic>0</panic>
<status>online</status>

<redial>global</redial>

</buddy>
</list>

%EndEncap% $status=OK

In the above listing, lines in blue are sent by the operator or control program. The lines in orange are

responses from the Z/IP ONE. As you can see, the “supv” object can be accessed before logging in. In

this way, your control program can connect to a LWCP-enabled device and determine the type and

version of the product in case special control is needed.

Any command can be given special parameters $ack and/or $trxi=”asdf”. Respectively, these request an

acknowledgment, and specify a transaction ID. The acknowledgement can be used to verify command

receipt when a command would not usually generate a response. Similarly, the transaction ID can be

any user-specified string, and can be used to establish which responses correspond to which

commands. Again, an example may clarify:

set network wanip="172.16.237.69"

set network wanip="172.16.237.69" $ack

ack network $status=OK
set network wanip="172.16.237.69" $trxi="as df"

set network wanip="172.16.237.69" $ack $trxi="as df"

ack network $status=OK $trxi="as df"
set network wanip="172.16.237.69" $ack $trxi=1234

ack network $status=OK $trxi=1234

Most set actions do not generate a response by default. The first command was successful. If your

application needs to know whether the command succeeded or not, it can request acknowledgement.

In this case, the $status=OK indicates that the command completed successfully.

3 Tech Tip – 10 August 2017

Next, you can see how transaction identifiers work. The first line that uses a transaction ID ($trxi) still

does not receive a response. That is because the command does not generate responses by default (if

it had, perhaps due to an error condition, the transaction ID would be included). On the next try, by

forcing a response with the $ack parameter, the transaction ID is returned. This identifier is arbitrary,

and is intended to be used by the controlling application to track a “conversation.” As shown by the

last pair of lines, whatever you specify as the $trxi parameter is echoed back on the response. You can

use this to write applications that work asynchronously to the communication channel, yet can still

detect responses to specific messages, reordering events, etc.

Livewire System Control Protocol – v.13 page 1 of 83

Printed: February 26, 2010 IMCS UL Confidential

Livewire System Control Protocol

Revision History

Jan 07 – Mar 09, 2005 V.01E1 Gints Linis: created
Mar 17 – Mar 23, 2005 V.02E1 Gints Linis:

Consolidated changes, proposed during discussion:
- Reworked event philosophy, introduced per-event properties, eliminated

event ID as the default property: edited 3.4, 3.5, 5.2.4, 5.2.5, 5.2.6, 5.5.5,
5.5.6, 5.5.7, 6.4, 6.5, 6.7; eliminated 5.3.1

- Entirely eliminated the default property mechanism: edited 4.10.3
- $IND option in SET commands: edited 5.2.1, 5.2.3, 5.5.2; new 5.4.6
- Refinements to the logic associated with ACK messages: edited 5.2.7, 5.5.2
- Floating point numbers are made optional, to a convention: edited 4.6
- Multidimensional arrays redefined as a special case of nested lists: edited 4.5
Declined proposals:
- Eliminate EVENT messages, use INDI instead
- Use SUB to request INDI responses for SET commands
- Use white space for list separator instead of comma
- Use “–” as the system name discriminator instead of “$”
- Move system items to second position, after the operation name
Other changes:
- Formal statement of GPIO protocol application scope: inserted 6.1
- GPIO outputs do not generate notifications: edited 6.6
- Code ranges and new values defined: edited Appendix A
User Panel Application Protocol
7 – New sub-protocol chapter written

Jul 14, 2005 V.03E1 Gints Linis:
New LOGIN operation:
5.1, 5.2.1 – LOGIN command listed and described
5.3.1, 5.3.2, 5.3.3 – New USER, PWD, ACCLEV properties
5.5.2 – New message sequence examples
Color control refined:
7.3.6 – property names changed, 4 independent fore-back color schemes
Console Remote Control Protocol
8 – New sub-protocol chapter written
Resource Discovery Protocol
9 – New sub-protocol chapter written

Jul 19, 2005 V.04E1 Gints Linis:
Common framework definition extended:
4.5 – Literal constants may include line breaks
User panel protocol: Ch.7 – multiple refinements
– Names changed: MOD_USER, BUT, KEY, IND
– New DISP control type
– IND property value type changed
– Using line breaks in TEXT property illustrated
– Color control philosophy explained
– Color control properties redefined
– Hex presentation allowed for RGB colors

Apr 07, 2006 V.05E1 Gints Linis:
Remote control - accessory module messages
8.2.2 – New object class: source channel
8.3.5 to 8.3.8 – Properties for the source channel

Livewire System Control Protocol – v.13 page 2 of 83

Printed: February 26, 2010 IMCS UL Confidential

8.4.6, 8.4.7 – Source channel operations
8.5 – approach for using UDP multicast explained
8.6.2 – Message sequences for source channel operations

Jul 17, 2006 V.06E1 Gints Linis:
Document general:
8.2 – Sections in this chapter grouped by remote control objects (8.)
Protocol framework modification:
5.2.6 – default for SUB command is all properties, not only events (5.2.6)
New features:
RQ 3325: Remote control – V-Mixer
8.4 – New V-Mixer section (8.4)

Jun 15, 2007 V.07E1 Gints Linis:
Documentation errors corrected:
8.4.3.5 – Typo corrected: INDI � EVENT (8.4.3.5)
New features:
RQ 3604: VMIX – engine local control
8.4 – Section edited to reflect the changed control approach (8.4)
RQ 3757: Remote control – V-Mode
8.5 – New V-Mode section (8.5)

Jun 28, 2007 V.08E1 Gints Linis:
Protocol framework changes:
4.3 – Inserting the “space” symbols is allowed before and after the list separator
“comma” (4.3)
Document updated to match the actual implementation:
8.4 – Class name “CH” renamed to “LWCH” (8.4)
Document updated to cover implemented features:
RQ 3708/T-56: Reporting fader channel ON and OFF button events
8.3 – Included in the new section: Fader channel – basic operations (8.3)
RQ 3431/T-51: Setting fader channel ON, OFF, MUTE; reporting state
events
8.3 – Included in the new section: Fader channel – basic operations (8.3)
New features:
RQ 3759/T-88: Setting fader gain
8.3 – Included in the new section: Fader channel – basic operations (8.3)
RQ 3776/T-97: Fader assignments to PGMx
8.3 – Included in the new section: Fader channel – basic operations (8.3)

Jul 04, 2008 V.09 Gints Linis:
Documentation corrected: v.09
5.2.1 – Added missing quotation marks
8.4.1 – Added missing port allocation info: port 4011
New features:
RQ 3994: Supervision status monitoring RQ 3994
10 – New sub-protocol chapter

Jul 09, 2008 V.10 Gints Linis:
Refinements in existing mechanisms:
RQ 4176: Password protection – general logic RQ 4176
3.7 – New section: access control logic
5.2.1 – LOGIN message description refined
5.3.1 – New UNIT object introduced
5.6.2 – Message sequence examples for LOGIN procedures extended

Jul 22, 2008 V.10a Gints Linis:
Documentation corrected: v.10a
5.6.2 – Added missing quotation marks

Sep 04, 2008 V.10b Gints Linis:
RQ 3419: Omnia processing on PGM1/Mon1 Headphones RQ 3419
8.6.2.2 – New selector state value for “PGM1 MON Processed”

Livewire System Control Protocol – v.13 page 3 of 83

Printed: February 26, 2010 IMCS UL Confidential

Feb 24, 2009 V.11 Gints Linis:
RQ 4519: VMIX and VMODE input connections RQ 4519
8.5.2, 8.5.3, 8.6.2, 8.6.3 – New “input_uri” property, command sequences

Sep 21, 2009 V.12 Gints Linis:
Documentation general: v.12
4.2 – ambiguous statements clarified
8.3 – Scope of the section extended from only faders to all console modules
RQ 3692: Fader source selection RQ 3692
8.3.3, 8.3.4.6 – New console input source related properties and handling
9.3.2, 9.4.2 – New global source list property and handling
Appendix B – New source status encoding reference
RQ 3777: Monitor external and aux return source selection RQ 3777
8.3.2.3, 8.3.2.4, 8.3.2.5, 8.3.2.6 – New objects for aux returns and monitors
8.3.3, 8.3.4.7 – New console input source related properties and handling
RQ 4610: Querying console resources RQ 4610
8.2.2, 8.2.3.6 – New fader list property and handling
9.3.4, 9.4.4 – New console hardware description property and handling
RQ 4736: Monitor module button events RQ 4736
8.3.3, 8.3.4.9 – New monitor source selector button state properties and handling
RQ 4738: Aux returns - on/off, fader gain, PGMx assignments RQ 4738
8.3.3, 8.3.4 – Applicability of the relevant properties extended to aux returns

Sep 25, 2009 V.12a Gints Linis:
RQ 3692: Fader source selection RQ 3692
8.3.2.2, 8.3.3, 8.3.4 – Object name changed to FaCH
RQ 4740: Naming style normalization RQ 4740
8.2.2.5, 8.2.4, 9.3.3, 9.5 – tag renamed in GPIO list: “lwch”
8.2.2.5, 8.2.3.5, 8.2.4, 9.3.1, 9.3.3, 9.4.1, 9.4.3, 9.5, 10.4.5 – XML tags all
lowercase

Sep 30, 2009 V.12b Gints Linis:
RQ 3692: Fader source selection RQ 3692
8.3.4.6 – Added use case for pending source loading states

Feb 05, 2010 V.13 Gints Linis:
5.5.5 – New common item: $diag_code

Contents
1. Introduction ... 8

1.1 Scope .. 8
1.2 Definitions and abbreviations ... 8
1.3 References .. 8

2. Design goals and principles ... 8
2.1 Supporting concurrent carrier protocols ... 8
2.2 Future extensions and coexistence of protocol variants .. 9
2.3 Connections and transport services ... 9
2.4 Universal message composition .. 9
2.5 Unambiguous message interpretation ... 9
2.6 Universal operation types ... 10
2.7 Application area specific items ... 10

3. General design ... 10
3.1 Application entities ... 10
3.2 Transport connections ... 10
3.3 Objects and properties .. 11
3.4 Events ... 11
3.5 Subscription to data flows... 12

Livewire System Control Protocol – v.13 page 4 of 83

Printed: February 26, 2010 IMCS UL Confidential

3.6 Livewire channels ... 13
3.7 Access control... 13

3.7.1 General logic .. 13
3.7.2 09 Jul 2008: The current requirements .. 13

4. Message composition ... 14
4.1 Character set ... 14
4.2 Case sensitivity ... 14
4.3 Special symbols .. 15
4.4 Names ... 15
4.5 Property values ... 15
4.6 Numeric data presentation .. 16
4.7 Encapsulated data ... 16
4.8 Message delimitation .. 17
4.9 Message structure ... 17
4.10 Construction of message elements .. 18

4.10.1 Operation ... 18
4.10.2 Object... 18
4.10.3 Property list .. 18
4.10.4 System items .. 19

5. Universal operations .. 19
5.1 Universal operations summary .. 19
5.2 Message descriptions .. 19

5.2.1 LOGIN: Login request ... 19
5.2.2 SET: Set value ... 20
5.2.3 GET: Read value .. 20
5.2.4 INDI: Indicate value .. 20
5.2.5 EVENT: Event notification .. 21
5.2.6 SUB: Subscribe to data flow .. 21
5.2.7 UNSUB: Unsubscribe from data flow ... 22
5.2.8 ACK: Acknowledgement ... 22

5.3 Universal objects .. 23
5.3.1 UNIT: The root object ... 23

5.4 Universal properties .. 23
5.4.1 USER: User name for login ... 23
5.4.2 PWD: Password for login .. 23
5.4.3 ACCLEV: Access level for login ... 23

5.5 Universal system items ... 24
5.5.1 $PROTID: Protocol version identifier ... 24
5.5.2 $MSGI: Message identifier .. 24
5.5.3 $TRXI: Transaction identifier .. 25
5.5.4 $STATUS: Status code .. 25
5.5.5 $diag_code ... 25
5.5.6 $ACK: Force acknowledgement .. 26
5.5.7 $IND: Force indication .. 26

5.6 Message sequence examples ... 26
5.6.1 Notation ... 26
5.6.2 Login .. 26

5.6.2.1 Unprotected interface .. 26
5.6.2.2 Protected interface, successful login, closing the connection resets the rights 26
5.6.2.3 Protected interface, repeated login procedures during a single connection 27
5.6.2.4 Unsupported access level parameter is ignored ... 27
5.6.2.5 Local client always has the full rights ... 27
5.6.2.6 Status responses .. 27

5.6.3 Set property value .. 28
5.6.4 Read property value ... 28
5.6.5 Indicate property value .. 28

Livewire System Control Protocol – v.13 page 5 of 83

Printed: February 26, 2010 IMCS UL Confidential

5.6.6 Broadcast event notification... 29
5.6.7 Subscribe to data flow .. 29
5.6.8 Unsubscribe from data flow ... 30

6. GPIO Application Protocol.. 31
6.1 Application ... 31
6.2 GPIO application objects .. 31
6.3 Properties .. 31

6.3.1 GPI STATE: State of input circuit ... 31
6.3.2 GPO STATE: State of output circuit ... 32
6.3.3 GPO PULSE: Command to output circuit ... 32

6.4 Conventions and options ... 32
6.5 GPIO events .. 33
6.6 GPIO commands ... 34
6.7 GPIO configurations ... 35

6.7.1 Console – source/monitor, UDP multicast ... 35
6.7.2 Console – source/monitor, TCP unicast ... 36
6.7.3 GPIO snake, TCP unicast .. 36

6.8 Proposed approaches for overcoming hardware capacity limitations ... 37
7. User Panel Application Protocol.. 39

7.1 Application ... 39
7.2 User panel application objects .. 39

7.2.1 General ... 39
7.2.2 Object addressing models .. 39
7.2.3 Control types .. 40

7.2.3.1 Button .. 40
7.2.3.2 Text/bitmap display ... 40
7.2.3.3 Other control types - TBD ... 41

7.3 Properties .. 41
7.3.1 KEY: State of the key .. 41
7.3.2 IND: State of the indication device .. 41
7.3.3 TEXT: ASCII characters to display ... 42
7.3.4 BITMAP: Bitmap pattern to display .. 43
7.3.5 ICON: Icon to display .. 44
7.3.6 FORECOLORON: foreground color for ON state BACKCOLORON: background color for ON state
FORECOLOROFF: foreground color for OFF state BACKCOLOROFF: background color for OFF state 44

7.4 Message sequence examples ... 45
7.4.1 Key events .. 45
7.4.2 Commands to indication device ... 46

8. Console Remote Control Protocol ... 48
8.1 Application ... 48
8.2 Common application control .. 48

8.2.1 Objects ... 48
8.2.2 Properties ... 48

8.2.2.1 Overview ... 48
8.2.2.2 ShowProfID: Show profile identifier .. 48
8.2.2.3 ShowProfName: Show profile name ... 49
8.2.2.4 ShowProfStat: Show profile loading status ... 49
8.2.2.5 GpioList: GPIO resource list ... 49
8.2.2.6 fader_list: List of the actually installed fader numbers .. 50

8.2.3 Commands and events.. 50
8.2.3.1 Legend ... 50
8.2.3.2 Trigger a profile change .. 50
8.2.3.3 Determine what the current profile and its status is ... 50
8.2.3.4 Observe profile changes .. 50
8.2.3.5 Obtain a list of GPIO resources... 50
8.2.3.6 Obtain a list of actually installed physical fader numbers ... 51

Livewire System Control Protocol – v.13 page 6 of 83

Printed: February 26, 2010 IMCS UL Confidential

8.2.4 Message sequence examples .. 51
8.3 Console operations ... 52

8.3.1 Application .. 52
8.3.2 Objects ... 52

8.3.2.1 Source ID – Livewire channel ... 52
8.3.2.2 Physical fader channel ... 52
8.3.2.3 Aux return ... 53
8.3.2.4 Monitor 1 .. 53
8.3.2.5 Monitor 2 .. 53
8.3.2.6 Preview ... 53

8.3.3 Properties ... 54
8.3.3.1 Overview ... 54
8.3.3.2 ON/OFF state .. 54
8.3.3.3 Fader channel input muting state ... 55
8.3.3.4 Fader channel mix assignment states ... 55
8.3.3.5 Fader gain .. 55
8.3.3.6 Command button state properties .. 55
8.3.3.7 Source profile list .. 56
8.3.3.8 Source profile identifier .. 56
8.3.3.9 Source profile name .. 57
8.3.3.10 Source profile loading status .. 57
8.3.3.11 Source Livewire channel .. 57

8.3.4 Commands and events.. 58
8.3.4.1 Legend ... 58
8.3.4.2 Subscribe to fader or aux return input channel control state changes .. 58
8.3.4.3 Set fader channel controls, addressing by source LW channel number ... 58
8.3.4.4 Read fader channel controls, addressing by source LW channel number .. 59
8.3.4.5 Notify remote application about fader channel control state changes, addressing by source LW
channel number .. 59
8.3.4.6 Set, get, observe fader and aux return input channel controls, addressing by physical input channel
 59
8.3.4.7 Fader source handling ... 60
8.3.4.8 Aux return and monitor input source handling .. 61
8.3.4.9 Notify remote application about monitor source selector button state changes 61

8.4 Fader channel – accessory module operations .. 61
8.4.1 Application .. 61
8.4.2 Objects ... 61

8.4.2.1 Source ID – Livewire channel ... 61
8.4.3 Properties ... 62

8.4.3.1 Overview ... 62
8.4.3.2 Command button state properties .. 62
8.4.3.3 Command button lamp properties ... 62
8.4.3.4 Headphones selector rotation amount ... 63
8.4.3.5 Headphones source name display text ... 63

8.4.4 Commands and events.. 63
8.4.4.1 Legend ... 63
8.4.4.2 User command from accessory module ... 64
8.4.4.3 Indication to accessory module ... 64

8.4.5 Message sequence examples .. 64
8.5 V-Mixer .. 65

8.5.1 Objects ... 65
8.5.2 Properties ... 66

8.5.2.1 Overview ... 66
8.5.2.2 Submix group master gain ... 66
8.5.2.3 Input source ... 66
8.5.2.4 Input gain .. 67

Livewire System Control Protocol – v.13 page 7 of 83

Printed: February 26, 2010 IMCS UL Confidential

8.5.2.5 Input ramp switch state.. 67
8.5.2.6 Input ramp up/down time .. 67

8.5.3 Commands and events.. 68
8.5.3.1 Legend ... 68
8.5.3.2 Subscribe to V-Mixer control parameter changes ... 68
8.5.3.3 Input source connection .. 68
8.5.3.4 Set V-Mixer control parameter by remote application .. 68
8.5.3.5 Read V-Mixer control parameter by remote application ... 68
8.5.3.6 Notify remote application about V-Mixer control parameter change .. 69

8.6 V-Mode .. 69
8.6.1 Objects ... 69
8.6.2 Properties ... 69

8.6.2.1 Overview ... 69
8.6.2.2 Input source ... 69
8.6.2.3 Input source selector state ... 70
8.6.2.4 Audio transfer mode .. 70

8.6.3 Commands and events.. 70
8.6.3.1 Legend ... 70
8.6.3.2 Subscribe to V-Mode control parameter changes.. 70
8.6.3.3 Input source connection .. 71
8.6.3.4 Set V-Mode control parameter by remote application .. 71
8.6.3.5 Read V-Mode control parameter by remote application ... 71
8.6.3.6 Notify remote application about V-Mode control parameter change .. 71

8.7 Special provision for operations over UDP multicast ... 72
9. Resource Discovery Protocol ... 73

9.1 Application ... 73
9.2 Resource data objects ... 73
9.3 Properties .. 73

9.3.1 ShowProfList: Show profile list ... 73
9.3.2 src_list: Source profile list ... 73
9.3.3 GpioList: GPIO resource list ... 74
9.3.4 console_hardware: Console hardware description ... 74

9.4 Resource discovery commands ... 75
9.4.1 Obtain a list of show profiles from console configuration data .. 75
9.4.2 Obtain a list of source profiles from console configuration data.. 75
9.4.3 Obtain a list of GPIO resources from GPIO unit configuration data ... 75
9.4.4 Obtain console hardware description from configuration data... 76

9.5 Message sequence examples ... 76
10. Unit Supervision .. 78

10.1 Application ... 78
10.2 Objects .. 78

10.2.1 Supervision entity .. 78
10.3 Properties ... 78

10.3.1 Overview .. 78
10.3.2 Device type .. 78
10.3.3 Software version ID ... 79
10.3.4 Supervision state .. 79
10.3.5 Controlling console IP address .. 79
10.3.6 Console type .. 80
10.3.7 Audio mixing mode ... 80

10.4 Message sequences ... 80
10.4.1 Overview .. 80
10.4.2 Unit status polling – the minimal response .. 81
10.4.3 Unit status polling – extended response ... 81
10.4.4 Reading an individual property .. 81
10.4.5 Reading bulk data .. 81

Livewire System Control Protocol – v.13 page 8 of 83

Printed: February 26, 2010 IMCS UL Confidential

Appendix A. Global status codes .. 82
Appendix B. Source status codes used in Element ... 83

1. Introduction

1.1 Scope

The first chapters of this specification define the common application-level protocol framework, to be universally
applied to all application-specific areas of LW system control. After that a number of sub-protocol specifications
follow.

The generic term "Livewire system control protocol" refers to the collection of all application-specific sub-protocols
compliant to the common framework. It is not mandatory that each sub-protocol implements all features specified
here. However, if a feature is implemented, it must be compliant to this specification.

The common application protocol framework definition includes the following:

• Common application notions, objects, identification and addressing methods
• Common message composition principles and ASCII-based syntax
• Universal data items, operation types and message sequences that would have identical meaning in all sub-

protocols
• Requirements to the connection management and message transport services

The sub-protocol definitions include the following:

• Data items, operation types and message sequences that are specific only to certain narrow application
areas, such as GPIO operations, automation system interface, etc. These features extend the capabilities
defined in the common framework, but at the same time they must stay compliant to the universal rules.

1.2 Definitions and abbreviations

ID Identifier
LW Livewire
LWCP Livewire control protocol
m/c Multicast
PF PathFinder application
p-p Point-to-point

1.3 References

2. Design goals and principles

2.1 Supporting concurrent carrier protocols

It will be possible in devices to support both the old CMsg/RUDP and the new ASCII-based carrier protocols at a
time.

For that, we will assign new port numbers to the new Livewire system control protocol family. These ports will exist
in parallel with the ports currently used by the old CMsg/RUDP based interfaces. Equivalent application content
arriving over either of these carriers will cause equivalent application reactions.

This approach will ensure smooth replacing of the old CMsg/RUDP protocol with the new control interface family
and compatibility between devices of different generations during the transition.

Livewire System Control Protocol – v.13 page 9 of 83

Printed: February 26, 2010 IMCS UL Confidential

Application examples:
• Provide resource advertisement in two different formats in parallel - CMsg and ASCII
• Provide PF with access to GPIO services using the ASCII protocol, at the same time keeping the GPIO

units compatible with the old SmartSurface interface as well
• Provide PF with access to SmartSurface show profile management services, still allowing SmartSurface to

communicate with other components using the old CMsg based control interface

2.2 Future extensions and coexistence of protocol v ariants

In an environment where different entities may support different protocol versions and/or functional subsets, to be
able to cooperate, entities need mechanisms ensuring the following:

• Exchange of information about the supported protocol versions and functional subsets
• Negotiation of the version/subset to be used in terms of a session
• Information about the syntax/format variants being used in an individual message

These mechanisms could be implemented using the following methods:

• One-way capability advertisement
• Interactive negotiation procedures
• Protocol version presentation in individual messages
• Format variant presentation in data units

Since we want to minimize duration of the specification process before starting application development, the first
applications may appear implementing only limited multi-version support mechanisms. The original specification,
with all its limitations, will be identified as version 1, and it will be used as the default if attempts to communicate in
terms of a higher protocol or data version fail.

The further developments will observe and rely on the following rules:

• A new formal protocol version ID must be assigned, if the updated specification contains extensions or
modifications, which may cause malfunction, if used together with the previous protocol version.

• The default protocol version and capability set always corresponds to the original specification. This applies
to each individual sub-protocol

• Any enhanced protocol version or capability set must be negotiated, which has not been present in the
default specification

• If negotiation is not requested or it fails, the default applies

2.3 Connections and transport services

All application transactions will be designed based on the following assumptions about the connection management
and message transport services:

• The transport layer is capable to ensure reliable delivery, if required. It means that the application layer will
not be required to comprise any reliability mechanisms within it. It will only request in each case a transport
service of an adequate reliability class.

• The connection management and transport layers will support both point-to-point and broadcast/multicast
types of communication. The application layer can select the desired delivery discipline but it does not need
to comprise any mechanisms to implement these disciplines.

2.4 Universal message composition

Common message composition principles will apply universally to all sub-protocols of LWCP. They will determine
• Message structure elements and their sequence
• Object addressing methods
• Syntax rules

2.5 Unambiguous message interpretation

Every single message must be meaningful and unambiguously interpretable alone, regardless of the context.

Livewire System Control Protocol – v.13 page 10 of 83

Printed: February 26, 2010 IMCS UL Confidential

This implicates that the operation name alone must determine the role of the message in terms of each sub-protocol.
Using the same operation name for several roles concurrently, for example, for commands in one direction and
responses in the other direction, is not acceptable - different operation names must be used for these purposes. This
rule makes the protocol clear, symmetric and overall more robust.

Examples:

Correct:
Command: READ <item name>
Response: INDICATE <item name><value>

Incorrect:
Command: SET <item><value>
Response: SET <item><value>

2.6 Universal operation types

There will be a set of universal application messages, having common meaning and composition everywhere. At the
outset this will include at least the messages to be used for common data item handling operations, like setting or
reading values. As the protocol evolves, this set could be extended with more messages, TBD yet.

2.7 Application area specific items

As long as they stay compliant with the universal message composition rules, sub-protocols serving specific
application areas may introduce their own dedicated operation types and data items, if they offer certain functional
advantages over the defined common types.

Such approach seems to be the best tradeoff to combine flexibility and simplicity in each specific application area
with protocol design that would be consistent throughout the system.

3. General design

3.1 Application entities

There are application function groups residing in Surfaces, Engines, nodes, automation systems, PathFinder, which
implement certain logic and communicate using LWCP messages.

3.2 Transport connections

Application entities use transport connections to communicate.

UDP/TCP port number 4010 is proposed as the default for all communications in terms of LWCP. This rule may
have exceptions:

• The default port may be already in use by other user equipment. For this case a mechanism should exist for
changing the default port number in field. It must not be available to the end user, only to the installation
engineer. It could be implemented via a hidden low-level configuration data file, or a configuration web
page requiring special access rights.

• Sub-protocols may be defined that would require their own dedicated ports. In this case new port numbers
should be allocated from the range 4011 and higher.

There will be dedicated transport and connection management layers so that application entities do not need to
implement any parts of these services. Application entities will have all the needed communication services at their
disposal, and just will have to specify the required connection attributes.

Connection attributes:

• Connection class:
o TCP connection (best-effort warranted delivery)

Livewire System Control Protocol – v.13 page 11 of 83

Printed: February 26, 2010 IMCS UL Confidential

o UDP unacknowledged datagram
• Distribution method

o Point-to-point/multipoint (single or multiple destination addresses)
o Broadcast (no concrete destination address, use multicast or broadcast)

• Application message aging
o This does not apply to UDP. Each single message can be either delivered or lost immediately.
o For TCP, at the theoretical level, this is an unresolved problem. There is no standard way to

specify the max time for continuing attempts to deliver a message. For some application cases
over-aged messages may cause significant system malfunction. A simple example is a PLAY
command to an automation source. If the first command was delayed, the user will hit the button
once again, which may result in unwanted skipping of a track, if both the original and the repeated
messages are ultimately delivered. Te only answer to this, existing yet, is the following. We
assume that all time-critical control transactions will happen inside a LAN, and that the probability
is very low that a message could be significantly delayed on a LAN and still be delivered after
some time. This could work practically, but it is not clean formally.

All combinations of the connection class and distribution method can be requested, except TCP connection with the
broadcast distribution method, which is obviously impossible.

3.3 Objects and properties

Object is an origin or a target of an operation.

Objects may be simple or structured. Structured objects may be addressable at different structure levels – besides the
identifier at the top level, each of the lower structure elements may have an ID too that can be used in messages.

An object may be, for example:

- Hardware resource: audio port, GPIO port
- Software resource: data unit, instance of an algorithm
- Thread: SmartSurface application control layer
- Complex multi-item structure: Collection of all resources assigned to a Livewire channel

Objects may have properties. The properties describe certain aspects of objects. A property may be, for example:

- Numeric parameter: audio signal level
- Logic state: state of a GPIO circuit
- Command: name of a batch program

Each property of an element of a complex structure is a property of the structure elements above it too, including the
top-level object. Thus a single property may have several concurrent names that allow associating it with different
structure levels.

3.4 Events

Events are significant occurrences in the system. These occurrences can be observed via object property changes.

An event can occur in the origin asynchronously, or it can be a side effect of received commands, or other external
activities or conditions.

The essential difference between simple property changes and events is determined by their effect on the system
operation. Example:

PROGRAM1 OUT_LEVEL=-24dB
PROGRAM1 silence_more_than_30_seconds=TRUE

The first is a simple property change, driving signal level displays. The second represents an emergency situation
that requires immediate action to recover audio on air therefore it should be qualified as an event.

Examples of possible reactions to an event:

Livewire System Control Protocol – v.13 page 12 of 83

Printed: February 26, 2010 IMCS UL Confidential

• Creating a log entry
• Sending a notification to other objects
• Sending commands to other objects
• Executing scripts

Existence of two rather different classes of property changes determines the need for differentiated notification
mechanisms. Two different message types and procedures will be used for that:

• “Indication” message (INDI) for exposing data
• “Event” message (EVENT) as a signal and prompt for action

The INDI message does not impose any obligations on the receiver side, and it is never acknowledged. EVENT is an
acknowledgeable message, and it may require that a receipt be returned and the due actions be taken by the recipient.

It is up to the application/script developer to make a decision in each particular case, what should be viewed as an
event and what should stay a simple value update. Based on this decision, one or the other type of protocol messages
and procedures should be used to report the property change.

Any arbitrary single, or a combination of multiple, property name-value pairs can be treated as an event. In the
general case it would be reported using the EVENT message with the relevant name-value pairs in it.

Besides the method described above, dedicated properties may be defined for occurrences of any kind, including
selected name-value pairs. These dedicated properties would directly reflect the states of the associated occurrences
and take values “TRUE” or ”FALSE”. Meaningful occurrence names should be assigned to these properties, to
obtain a clear and easy to use property set.

Although the protocol formally allows treating the dedicated per-occurrence properties as simple values as well, it is
expected that in most practical applications they will be used to represent what is to be viewed as events, and each of
these properties changing their states would trigger notifications.

3.5 Subscription to data flows

There will be a common discipline defined that would allow application entities to subscribe for receiving certain
event notifications or property value indications. An individually addressed copy of each notification or indication
will be sent to each subscriber currently on the list.

The subscription request message points to a certain object and its property. It instructs the source to add the client to
the notification list associated with this property. In result the client will start receiving the requested event
notifications or property value indications.

The subscription request does not determine the form of the notification. If the detected property change belongs to
the event category, the event notification message will be used, otherwise a value indication message will be sent.

The subscription request also does not determine the conditions for generating notifications. They can be either
associated with the property permanently, or, if such flexibility is needed, could be configured via the relevant
application area sub-protocols. These conditions may include:

• Periodic value updates
• Value indication on change
• Taking special values or crossing thresholds

Thus the subscription request only determines a property to be observed, where the value indications are triggered
according to the algorithm and conditions in the property owner.

The subscription service itself does not presume using any concrete connection class - TCP or UDP. The latter
should depend rather on the role of the data flow and the effect of delivery failures on the system operation.

The subscription mechanism does not need to be involved to receive data flows that are broadcast by the origin.

Livewire System Control Protocol – v.13 page 13 of 83

Printed: February 26, 2010 IMCS UL Confidential

3.6 Livewire channels

Livewire channels are virtual pipes that exist in Livewire broadcast, at the application level. While physically the
control events are broadcast, these pipes allow application entities to selectively process only certain flows of them,
rather than fully processing all.

If a channel is allocated for exclusive use by two application entities, then from the application logic viewpoint it
serves as a virtual point-to-point connection between them.

The existing (CMsg/RUDP) GPIO control interface could be an example for this type of communication. Physically
all GPIO events in the system are broadcast on a common m/c address. At the application level each GPIO port owns
a channel number, which is thus exclusively reserved for signaling between SmartSurface and that single GPIO Port.

With migration to TCP, the channels would be obviously no more needed to implement p-p configuration at the
device level, still they may appear useful to organize virtual pipes inside a TCP link, like described above.

In LWCP messages the channel may appear in the role of a “super-object” that represents the whole collection of
items hooked on that channel.

3.7 Access control

RQ 4176

3.7.1 General logic
Application entities may restrict access to their resources by allowing only certain authenticated clients to execute
protected operations. Generally the complexity of such restrictions may range from all operations unprotected to
detailed mapping of multiple access levels to individual operation types and data sets.

The actual access level is an attribute of the connection established to the resource. After opening a connection, the
default access level will be set automatically.

Further the client may continue working at the default level, or it may request an access level change by means of a
login procedure. The access level change may be requested at any time during the connection, and repeatedly as well.

If a login message is received without the user name/password pair, or with an invalid pair, the connection would
stay at, or return to the default access level. Opening a new connection, even for the same client, will reset the access
level to the default as well.

In a system supporting differentiated access levels, the client can explicitly specify the preferred level, using the
ACCLEV property of the LOGIN request.

To ensure smooth upgrading from older software versions that may implement unprotected full access, the protected
application entities must offer a configuration option to completely disable the protection mechanism. By leaving the
password blank, or clearing it, the protection will be deactivated, and full access rights will be automatically granted
to all client connections.

Since there seems to be no practical value in requiring the password from local clients connecting via 127.0.0.1, and
also to stay consistent with the specified behavior of LWRP interface, these connections are automatically granted
full access rights, without the login procedure.

3.7.2 09 Jul 2008: The current requirements
The following statements define the immediately required functionality. It complies to the general logic as described
above, but represents a narrowed subset of it, with the needed details provided.

1. Two access levels are defined:

Livewire System Control Protocol – v.13 page 14 of 83

Printed: February 26, 2010 IMCS UL Confidential

a. “Read-only”: The client can only read data values and receive notifications (including using the
subscription service if such is offered), but can not execute any commands changing the operation
states or configuration of the unit. Presently, from the group of the universal operations, the SET
command is the only one that is not allowed at this level.

b. “Full control”: The client can execute all commands, including SET.

2. If a password is set, the password protection is activated, and the default access level for all connections is

“read-only”. The “read-only” access is set immediately after opening every new connection, before login,
and it would be maintained in the case of unsuccessful login attempts.

3. After a client has provided a LOGIN message with any valid user name/password pair, its connection is

granted the “full control” access level. Login messages without the user name/password pair, or containing
an invalid pair, or generally incomplete or corrupted, do not change the access level to “full control” and
leave it at “read-only”. The “full control” access level will not be transferred from the previous connection,
even for the same client - every new connection requires a new login.

4. Once granted, the “full-control” access lasts until either:

a. the connection is closed
b. a LOGIN message with an empty or invalid name/password pair is received that would reset the

access level to “read-only”.

5. If no password is set, the password protection is deactivated, and the access level is permanently “full

control” for all active connections.

6. On the devices supporting local clients via 127.0.0.1, these connections are automatically granted the “full

control” access level, without the login procedure.

7. The resource must accept commands without the access level property ACCLEV.

8. The resource is not required to support the access level property ACCLEV, and clients must not rely on
having such support in the resource, unless including it into certain resources has been explicitly agreed
between developers.

9. The resource is not required to provide, and clients must not rely on receiving any status responses to their

login requests, neither successful nor unsuccessful, unless including such support into certain resources has
been explicitly agreed between developers.

4. Message composition

4.1 Character set

All messages consist exclusively of printable ASCII characters, codes 32 to 126 (decimal).

4.2 Case sensitivity

v.12
1. Message parsing is case-insensitive. That means – all names, which identify LWCP operations, objects,

properties, enumerated values, system items, will be recognized by the receiver regardless of the actual character
cases in the message.

2. Protocol is transparent for text data carried as property values. That means – character cases in text property

values can not be modified during transportation or storage.

Livewire System Control Protocol – v.13 page 15 of 83

Printed: February 26, 2010 IMCS UL Confidential

4.3 Special symbols

Message structure element separator: Space (SP)
PLAY CD1

Object entity identifier separator: Number sign

CH#1001
GPO#ON_AIR_LAMP

Object structure level separator: Full stop

CH#1001.OUT#2

Property value separator: Equals sign

STATE=HIGH

List separator: Comma. Inserting an arbitrary number of the “Space” symbols is allowed both before and after the
comma.
 5.25,10.1,–27.3
 5.25, 10.1 , –27.3

STATE=HIGH, TIME=250

Literal constant delimiters: Quotation marks

“Mike’s Morning”

Value list/array delimiters: Square brackets

[70,2.0,BANDPASS]
[-50,-40,-30,-20]

System item name discriminator: Dollar sign

$DebugMode

4.4 Names

Names are used to identify:
- Operation types
- Object classes
- Object entities
- Properties
- Enumerated constants
- System items

Name is an ASCII string, beginning with a letter, and consisting of digits, letters, and “low line” characters (“_”).

Names of special-purpose system items follow the same rule, but they always have a prefix – a dollar sign (“$”) as
the discriminator.

Examples:

PLAY
AUDIO_EVENT_3

$DebugMode - This one is a system name

4.5 Property values

A value of a property can be one of the following:
- Literal constant
- Numeric constant
- Named enumerated constant
- List/array of constants
- Encapsulated data

Livewire System Control Protocol – v.13 page 16 of 83

Printed: February 26, 2010 IMCS UL Confidential

An arbitrary ASCII string enclosed in quotation marks must be interpreted as a literal constant:

“Mike’s Morning”

Line breaks are allowed in literal constants, encoded as “/n”:
“Select/nsource”

An ASCII string beginning with a decimal digit and not enclosed in quotation marks must be interpreted as a
numeric constant:

5.25

An ASCII string beginning with a letter and not enclosed in quotation marks must be interpreted as a named
enumerated constant:

HIGH

A number of constants of any type, separated by commas, and enclosed in square brackets, form a list/array of
constants:

[70,2.0,BANDPASS,16000,3.0,SHELF]
[-50,-40,-30,-20]

Nested pairs of brackets denote nested lists. Multidimensional arrays are a special case of nested lists.

[[-50,GREEN],[-12,YELLOW],[-3,RED],5,200]
[[1,0,0,0],[0,1,0,0],[0,0,1,0]]

An arbitrary sequence of ASCII characters enclosed between the encapsulation begin-end markers must be
interpreted as encapsulated data:

%BeginEncap%Data go here%EndEncap%

4.6 Numeric data presentation

All types of numeric data are encoded as ASCII strings.

Decimal integers:

5 1000 -27

Decimal fixed point:
 5.25 10.1 –27.3

Decimal floating point
 5e12 10.1e-20 -27.3e-20

This form is considered rarely needed. Implementation is optional, according to a use convention.

Hex:
 0xA 0x100 0xBE75

Binary
 0b101 0b11001100

4.7 Encapsulated data

The following tags mark beginning and end of an encapsulated ASCII data block:
%BeginEncap%
%EndEncap%

The enclosed data block is not allowed to comprise the end marker as a sub-string. Except this restriction, it is
allowed to contain arbitrary printable ASCII data.

Note: There was an alternative proposal too, to use a non-printable character for the end marker. It would
formally solve the content restriction problem, but could appear less convenient in use, due to presence of invisible

Livewire System Control Protocol – v.13 page 17 of 83

Printed: February 26, 2010 IMCS UL Confidential

characters in the message body. Possibly, incompatibility with some carrier protocols could be encountered too.
Therefore using printable tags is being proposed, based on the following considerations:

1) This is not a general-use data transport protocol, therefore we can assume that the encapsulated data in
most cases would contain constructs defined in terms of Livewire protocol family design

2) The proposed tags are relatively long and “exotic”, and they begin with a special character that usually
does not precede letters. This makes the probability extremely low that the enclosed data content could
mimic the delimiters by accident.

3) If practical applications discover problems with these printable delimiters, we have the door open to fix
this by defining an extended protocol version, where using alternative delimiters would be allowed. These
new delimiters might rely on using non-printable characters, or any other appropriate methods.

4.8 Message delimitation

Each application message is a line of ASCII characters terminated by CR+LF.

It is allowed to pack several CR+LF terminated application messages into a single transport service request. From
the application logic viewpoint such bundled messages would be handled exactly as a series of equivalent single
messages.

This protocol allows that CR+LF appear in encapsulated data in the message body, as long as using the
encapsulation begin-end markers is strictly observed. This design relies on a restriction that an application message
would never be split over several outgoing transport service requests. It means that the incoming transport service
would always deliver the whole application message (or several messages), never a fragment. Since the transport
services ensure application message integrity, interpretation errors should not occur.

4.9 Message structure

The general structure is common for all message types.

At the top level a message may contain the following elements, and they follow in a fixed sequence as shown below,
separated by spaces:

<Operation> SP <Object> SP <Property list> SP <Syst em items>

Operation identifies the activity being requested or reported by the message. Most of them will be either a
command, a response to a command, a data or status indication, or an event report, but possibly some other classes
could be distinguished too. Operation is the only mandatory element in all messages.

Object identifies the target or the origin of the operation, unless it is determined by another method. There may be
one object in a message, or none.

The properties always belong to the specified object. List of properties cannot be included if there is no object
specified. From the message structure viewpoint, the list of properties is open. It may contain an arbitrary number of
items, or be empty. The operation and object type will determine if each concrete property is mandatory or optional.
The list of properties for any object may be extended as system evolves.

System items are optional and may be present in all types of messages. They are intended to serve system and
protocol control needs and are not necessarily related to end-application objects. They will be unconditionally
distinguishable thanks to their tags, all beginning with a special prefix – a character sequence reserved exclusively
for this use. This allows placing them at the end of any message, regardless of presence or absence of other message
elements.

Livewire System Control Protocol – v.13 page 18 of 83

Printed: February 26, 2010 IMCS UL Confidential

4.10 Construction of message elements

4.10.1 Operation
Operation is a simple item with no nested sub-structure and no value. It is identified by a name.

The length of operation name may be arbitrary. Not restricting all operation names to one common length has the
advantage that an intuitive, easy to read and remember name can be assigned to each operation type, thus improving
readability and minimizing the probability of misuse and misinterpretation. The latter is the weak point of using too
short abbreviation-style names.

Examples:

PLAY
SET
SELECT

4.10.2 Object
Object may be a simple or a structured item, and several entities can exist at each structure level. A full object
identifier may be composed of class names and entity identifiers.

Class name is a name. There is a mandatory class name at each structure level, at least one.

Entity identifier is a decimal positive integer number or a name. Entity identifier must be included if several
numbered or enumerated entities exist at that structure level.

Examples of the possible forms of the object identifier:

- Single structure level without entity ID. This is the simplest form of the object, and it is identified by a
name:

CONFIG_DATA

- Multi-level nested structure without entity ID:
CONFIG_DATA.SYSTEM_SETTINGS

- Single structure level with entity ID:
CHANNEL#1001
SCRIPT#ACTIVATE_BACKUP

- Multi-level nested structure with entity IDs:
CHANNEL#1001.GPI#7
CHANNEL#1001.GPO#ON_AIR_LAMP

4.10.3 Property list
Each property is a simple item with no nested sub-structure. It is identified by a name.

A property may have several concurrent names that make possible associating it with different object structure levels.
This principle allows the application developer to choose such form for pointing to a property, which seems most
convenient and intuitive in the given context. The following could be an example of such equivalents:

CHANNEL#1001.GPI#7 STATE
CHANNEL#1001 STATE_OF_GPI7

Depending on the message context, the property list may consist of either

- Property name-value pairs
- Property names only

Property list examples:
Two property name-value pairs on the list:

SET CH#1002.GPO#7 STATE=HIGH,TIME=250

Single property on the list, name only:
GET CH#1001.GPI#2 STATE

Single property on the list:

Livewire System Control Protocol – v.13 page 19 of 83

Printed: February 26, 2010 IMCS UL Confidential

EVENT AIN#5 CLIP=TRUE

4.10.4 System items
System items may serve rather different and difficult to predict purposes, therefore their composition is restricted to a
less extent than other message elements. The name of a system item determines its role in the operation and the
meaning of the data following it. It is the application developer’s responsibility to avoid abuse, and keep these items
as simple as possible.

5. Universal operations

5.1 Universal operations summary

The following operations are defined for common use throughout the system and are to be interpreted and processed
in compliance with descriptions given below.

Operation name Meaning

LOGIN Login request
SET Request to set property value
GET Request to indicate property value
INDI Property value indication
EVENT Event notification
SUB Subscribe to data flow
UNSUB Unsubscribe from data flow
ACK Universal acknowledgement

 5.2 Message descriptions

5.2.1 LOGIN: Login request
RQ 4176

Description The LOGIN message is used to request a certain access level to a certain entity. The
request message points to an object that requires passing the access control, and it
may carry a user name and password pair as parameters.
A login message without the user name/password pair can be used to reset the access
rights to the automatic default.
Optionally the message may contain an access level parameter:

- If the object does not support differentiated access levels, this parameter will
be ignored

- If the object supports differentiated access levels, and this parameter is
included, the user attributes will be checked against the requested access
level exactly.

- If the object supports differentiated access levels, and this parameter is not
included, the user attributes will be checked and the lowest access level from
the range associated with that particular user will be granted by default.

Optionally, acknowledgement can be requested by means of including the $ACK
item, in which case a transaction identifier $TRXI is mandatory. Otherwise the
transaction identifier is optional.

Operation name LOGIN

Message elements Object identifier – mandatory
USER and PWD properties – mandatory to authenticate a user, or
 not included to reset the access level
ACCLEV property – optional

Livewire System Control Protocol – v.13 page 20 of 83

Printed: February 26, 2010 IMCS UL Confidential

$ACK – optional, force acknowledgement

$TRXI – conditional

Examples
v.09

Basic login request:
LOGIN CONFIG USER=”MIKE”,PWD=”AXIA”

Basic login request, ack required:
LOGIN CONFIG USER=”MIKE”,PWD=”AXIA” $ACK $TRXI=555

Login request to a certain access level:
LOGIN CONFIG USER=”MIKE”,PWD=”AXIA”,ACCLEV=2 $ACK $ TRXI=555

5.2.2 SET: Set value

Description The SET message is used to set a value of a property. The request message must
contain the identifier of the object-owner and one or multiple property values or
name-value pairs. Optionally, a general acknowledgement can be requested by means
of including the $ACK item, or indication of value after execution by means of the
$IND item. In the latter cases a transaction identifier $TRXI is mandatory. Otherwise
the transaction identifier is optional. Returning an ACK message with a proper status
code is mandatory, if the command structure or some of the included items appear
invalid, or setting the new value fails due to another reason.

Operation name SET

Message elements Object identifier – mandatory
Property list with values – mandatory
$ACK – optional, force acknowledgement

$IND – optional, force indication
$TRXI – conditional

Examples SET CH#1001.GPO#2 STATE=HIGH,TIME=250 – no response requested

SET CH#1002.GPO#5 STATE=LOW $ACK $TRXI=555 – ACK is requested
SET CH#1002.GPO#5 STATE=LOW $IND $TRXI=555 – INDI is requested

5.2.3 GET: Read value

Description The GET message is used to request indication of the value of a property. A response
message INDI is required to be returned with the actual value. A status code may be
included in the response, if reading the value fails, to indicate the reason of the
failure. An ACK message with a proper status code must be returned instead of INDI,
if the command structure or some of the included items appear invalid. The request
message must contain the identifier of the object-owner and one or multiple property
names without values. Optionally, a transaction identifier $TRXI may be included.

Operation name GET

Message elements Object identifier – mandatory
Property list, names only – mandatory
$TRXI – optional

Examples GET AOUT#2 PEAK,RMS
GET AIN#4 PSNM,LWSE,INGN $TRXI=555

5.2.4 INDI: Indicate value

Description The INDI message is used to indicate the value of a property. This message may be
sent in response to a SET $IND command, a read request GET, or at any other
instant, according to the operation logic of the property owner, for example – periodic
updates of a meter or sensor value. A status code may be included to report special
conditions. The indication message must contain the identifier of the object-owner

Livewire System Control Protocol – v.13 page 21 of 83

Printed: February 26, 2010 IMCS UL Confidential

and one or multiple property values or name-value pairs. Value is not included if
reading fails, or target of the request was invalid. If an INDI message is generated in
response to a SET or GET message, and the request message includes a transaction
identifier $TRXI, the latter must be copied into the response message. If the property
owner generates the INDI message without a prior request, including the transaction
identifier is optional.

Operation name INDI

Message elements Object identifier – mandatory
Property list with/without values – mandatory
$STATUS – conditional
$TRXI – conditional

Examples INDI CH#1001.GPI#2 STATE=HIGH
INDI AOUT#2 PEAK=6.4,RMS=-2.1

INDI AOUT#2 PUUK $STATUS=8 $TRXI=555 - unknown property name

5.2.5 EVENT: Event notification

Description The EVENT message is used to send an asynchronous notification about an event.
Optionally, acknowledgement can be requested by means of including the $ACK
item, in which case a transaction identifier $TRXI is mandatory. Otherwise the
transaction identifier is optional. The notification message must contain the identifier
of the object-origin and one or multiple property name-value pairs, which sufficiently
describe the event. Returning an ACK message with a proper status code is
mandatory, if the command structure or some of the included items appear invalid, or
the required reaction to the event cannot be ensured due to another reason.

Operation name EVENT

Message elements Object identifier – mandatory
Property list with values – mandatory
$ACK – optional, force acknowledgement
$TRXI – conditional

Examples Selected combination of values is handled as an event:
EVENT AIN#5 LEVEL=-60.0,TIME=10

A dedicated per-event property changes its state:
EVENT AIN#2 CLIP=TRUE $ACK $TRXI=555

5.2.6 SUB: Subscribe to data flow

Description The SUB message is used to subscribe to a data flow. The request message points to a
certain object and its property. It instructs the source to add the client to the
notification list associated with this property. In result the client will start receiving
the requested event notifications or property value indications. The default is
subscription to all properties associated with the object – in this case the property list
is not required. Optionally, acknowledgement can be requested by means of including
the $ACK item, in which case a transaction identifier $TRXI is mandatory. Otherwise
the transaction identifier is optional.

Operation name SUB

Message elements Object identifier – mandatory
Property name list – optional, default is all properties
$ACK – optional, force acknowledgement

$TRXI – conditional

Examples Subscribing to selected events, ACK requested in the first example:

Livewire System Control Protocol – v.13 page 22 of 83

Printed: February 26, 2010 IMCS UL Confidential

SUB AOUT#2 CLIP,NOCLIP $ACK $TRXI=555
SUB GPI#2 STATE

Subscribing to all properties associated with the object:
SUB AOUT#2

Subscribing to simple property value updates:
SUB AIN#5 PEEK,RMS

5.2.7 UNSUB: Unsubscribe from data flow

Description The UNSUB message is used to unsubscribe from a data flow. The request message
points to a certain object and its property, and it instructs the source to remove the
client from the notification list associated with this property. In result the client will
stop receiving property value indications or event notifications. The default is
unsubscribing from all notifications associated with the object, including simple value
updates – in this case there is no property list in the message. Note that this is
different from the subscription request, where the default applies only to events, not
the simple value updates. Optionally, acknowledgement can be requested by means of
including the $ACK item, in which case a transaction identifier $TRXI is mandatory.
Otherwise the transaction identifier is optional.

Operation name UNSUB

Message elements Object identifier – mandatory
Property name list – conditional
$ACK – optional, force acknowledgement

$TRXI – conditional

Examples Unsubscribing from a selected event:
UNSUB AOUT#2 CLIP,NOCLIP $ACK $TRXI=555
UNSUB GPI#2 STATE

Unsubscribing from all notifications:
UNSUB AOUT#2

Unsubscribing from a property value:
UNSUB AIN#5 PEEK,RMS

5.2.8 ACK: Acknowledgement

Description The ACK message is used to acknowledge either reception or execution of the
command, according to the logic defined for the recipient. Rather than simple
confirmation of delivery ensured by TCP, this response provides feedback at the
application level. It informs the origin of the request whether the message could be
interpreted and/or executed. This is the universal form of acknowledgement, to be
used by default, unless the concrete procedure requires another specific type of
response. If the command message includes the $ACK item, returning this response
message is mandatory. The default status code is “OK”, and it is allowed to be not
included. In all other cases the status code is a mandatory element of ACK messages.
Object ID must be included if there is no other mechanism associating the ACK
message with the origin of the operation. Object ID may be included also to assist
selective processing in the case of broadcast type of communications. If the request
message of any type includes a transaction identifier, the latter must be copied into
the ACK message.

Operation name ACK

Message elements Object identifier – conditional
$STATUS – conditional
$TRXI – conditional

Examples ACK – OK, it is the default code

Livewire System Control Protocol – v.13 page 23 of 83

Printed: February 26, 2010 IMCS UL Confidential

ACK $STATUS=OK – OK, same as above, but status code is included
ACK CH#1001 $STATUS=0
ACK $STATUS=2 $TRXI=555

5.3 Universal objects

5.3.1 UNIT: The root object
RQ 4176
This is the formal root of all application related resources and aspects existing in a concrete unit. It is being
introduced to obtain the means for addressing the application as a whole, instead of talking to individual resource
groups or aspects. The class name for it is:

unit

The first, and the only defined so far, use for this super-object is the login procedure. Originally all Livewire devices
will only support one common password for all groups of application operations. Therefore, to keep the interface
logic clean, a login target is needed that covers it all.

login unit user=”Mike”, pwd=”Axia”

In the case a mechanism for selective login to smaller function groups would be required later, a corresponding
collection of object names would be introduced to represent certain parts or aspects of the unit. These names may
identify interim layers, referencing whole function groups, as well as they may go down till concrete objects being
used as targets in control operations. General examples (not to be used as final name definitions):

login config_data – accessing all configuration data stored in the unit
login config_data.sources – accessing only source configuration data stored in the unit
login remote_operations – accessing the entire remote operations aspect

login remote_operations.vmix – accessing the V-mixer operations only

5.4 Universal properties

5.4.1 USER: User name for login

Description Mandatory item in the LOGIN message - identifies the user attempting to login. If the
resource supports differentiated access levels, the user name determines the allowed
range.

Item name USER

Data type Literal constant

Value range No content or length limitations are defined by this protocol. The resource may
introduce such limitations though.

5.4.2 PWD: Password for login

Description Mandatory item in the LOGIN message, always used in pair with the USER item. It
confirms that an authorized person is attempting to login.

Item name PWD

Data type Literal constant

Value range No content or length limitations are defined by this protocol. The resource may
introduce such limitations though.

5.4.3 ACCLEV: Access level for login

Description Optional item in the LOGIN message. It may be used if the resource supports

Livewire System Control Protocol – v.13 page 24 of 83

Printed: February 26, 2010 IMCS UL Confidential

differentiated access rights levels.

Item name ACCLEV

Data type Numeric constant
Named enumerated constant

Value range Grouping of access rights may depend on the concrete application area, therefore no
range restrictions or value interpretations are defined at this universal level. The
relevant subprotocol must define them in cases, where differentiation of access rights
is implemented.

5.5 Universal system items

5.5.1 $PROTID: Protocol version identifier

Description The protocol version ID is a reference to the interface specification variant describing
the expected behavior and rules for composing and interpreting messages. This item
is not required but is allowed to be present in all messages. If it is not present, the
session default applies, or if no session default is established, the global default –
protocol version 1 applies. Some data items may have internal structure and packing
variants allowed in terms of a single protocol version. Such variants must be
identifiable by means of internal elements of these data items. In this case the
protocol version must be a sufficient key to locate and interpret the internal format
descriptor or its equivalent.

Item name $PROTID

Data type Numeric constant

Value range Positive integer decimal number

5.5.2 $MSGI: Message identifier

Description Message identifiers may be used to personalize individual messages. This item is not
required but is allowed to be present in all messages. It should be used if the ability to
recognize individual messages is required by the operation logic. The identifier value
is assigned by the sender, and it must be ensured that this value is unique among all
incoming messages of all potential receivers. Thus for isolated p-p sessions
uniqueness must be ensured only in terms of the current session, whereas for
messages being distributed using the broadcast method, the identifiers must be unique
system-wide. The latter imposes that some kind of unit ID were included as a part of
the broadcast message identifier.

Item name $MSGI

Data type Numeric constant
Literal constant

Value range • Uniqueness must be ensured as stated above
• Numeric identifiers are limited to positive integer decimal or hexadecimal

numbers
Examples of numeric identifiers:

$MSGI=87342
$MSGI=0x5EAB65AA6

Examples of literal identifiers:
$MSGI=”87342”
$MSGI=”192.168.10.101.9538”

Livewire System Control Protocol – v.13 page 25 of 83

Printed: February 26, 2010 IMCS UL Confidential

5.5.3 $TRXI: Transaction identifier

Description Transaction identifiers may be used to link related messages in terms of complex
operations. This item is not required but is allowed to be present in all messages.
Exclusively the origin of the transaction decides if the identifier will be used or not. If
it was included at the origin, all the following messages exchanged in terms of this
transaction must contain the same identifier value as a reference. If it was not
included, the following messages must not contain it either. The identifier value is
assigned by the origin, and it must be ensured that this value is unique among all
transactions that may be currently active on all potential receivers of messages being
exchanged in terms of this transaction.

Item name $TRXI

Data type Numeric constant
Literal constant

Value range • Uniqueness must be ensured as stated above
• Numeric identifiers are limited to positive integer decimal or hexadecimal

numbers
Examples of numeric identifiers:

$TRXI=87342
$TRXI=0x5EAB65AA6

Examples of literal identifiers:
$TRXI=”87342”
$TRXI=”192.168.10.101.9538”

5.5.4 $STATUS: Status code

Description Status code is allowed to be included in all response messages to report execution
status or special conditions. It is a mandatory item in the universal acknowledgement
messages ACK, except the convention about “OK” as the default status.

Item name $STATUS

Data type Numeric constant
Named constant

Value range Enumerated set of codes. See Appendix A for global status codes, which are common
for all application areas. Besides these, local codes may be defined in terms of
application-specific sub-protocols.
Examples of numeric codes:

$STATUS=0 – OK
$STATUS=2 – Value out of range

Examples of named codes:
$STATUS=OK
$STATUS=OUT_OF_RANGE

5.5.5 $diag_code

Description Unlike the $status, which is intended to be an officially documented item for
operation diagnostics, $diag_code is primarily oriented at use by service and
application developers. Since the content of $diag_code may change rather
dynamically during the development process, the concrete values may be not always
fully documented.

Item name $diag_code

Data type Numeric

Value range Positive integer

Livewire System Control Protocol – v.13 page 26 of 83

Printed: February 26, 2010 IMCS UL Confidential

It may carry encoded any type of information - a situation id, the number of a failed
source code line, etc. The format may be decimal, hex, or binary, whichever best
matches the actual content. Examples:

dec: $diag_code=32
hex: $diag_code=0x20
bin: $diag_code=0b00100000

5.5.6 $ACK: Force acknowledgement

Description This item is allowed to be included in all command messages, which do not require
other specific response types. If it is included, the receiver must acknowledge
receiving and execution of the command.

Item name $ACK

Data type This item is a complete instruction rather than a variable. Presence of the item name
alone fully determines meaning, and no value data type is associated with it.

Value range No value

5.5.7 $IND: Force indication

Description This item is allowed to be included in SET command messages. If it is included, the
receiver must respond with indicating the new property values after execution of the
command.

Item name $IND

Data type This item is a complete instruction rather than a variable. Presence of the item name
alone fully determines meaning, and no value data type is associated with it.

Value range No value

5.6 Message sequence examples

5.6.1 Notation
All object and property names and values in this section are for illustration only. They must not be viewed as a sub-
protocol specification, although some names may match incidentally.

Abbreviations:
C Client
S Server

5.6.2 Login
RQ 4176 v.10a

5.6.2.1 Unprotected interface
 No password is set in the unit, to disable the protection
C: Open connection to the unit
S: (granted “full control” rights)
 ...

 Any LOGIN message, including an incomplete one, corrupted, or containing an invalid name/password pair
C: LOGIN UNIT USER=”MIKE”,PWD=”BBBB”
S: (retained “full-control” rights)

5.6.2.2 Protected interface, successful login, closing the connection resets the rights
 Password is set in the unit, and protection is enabled

Livewire System Control Protocol – v.13 page 27 of 83

Printed: February 26, 2010 IMCS UL Confidential

C: Open connection to the unit
S: (granted “read-only” rights)
 ...

 Valid pair of user name and password is provided
C: LOGIN UNIT USER=”MIKE”,PWD=”AXIA”
S: (granted “full-control” rights)
 ...

 Closing the connection resets the rights
C: Close the connection
 ...
C: The same client reopens the connection
S: (granted “read-only” rights)

5.6.2.3 Protected interface, repeated login procedures during a single connection
 Password is set in the unit, and protection is enabled
C: Open connection to the unit
S: (granted “read-only” rights)
 ...

 Incomplete LOGIN message received
C: LOGIN
S: (retained “read-only” rights)
 ...

 Invalid pair of user name and password is provided
C: LOGIN UNIT USER=”MIKE”,PWD=”BBBB”
S: (retained “read-only” rights)
 ...

 Valid pair of user name and password is provided
C: LOGIN UNIT USER=”MIKE”,PWD=”AXIA”
S: (granted “full-control” rights)
 ...

 LOGIN message without any name/password pair
C: LOGIN UNIT
S: (reset to “read-only” rights)

5.6.2.4 Unsupported access level parameter is ignored
 Password is set in the unit, and protection is enabled
C: Open connection to the unit
S: (granted “read-only” rights)
 ...

 Valid pair of user name and password is provided. The unsupported preferred access level property will be
 ignored, and the rest of the command will be executed.
C: LOGIN UNIT USER=”MIKE”,PWD=”AXIA”,ACCLEV=5
S: (granted “full-control” rights)

5.6.2.5 Local client always has the full rights
 Password is set in the unit, and the external interface is protected. A local client is connecting.
C: Open connection to the unit via 127.0.0.1
S: (granted “full control” rights)
 ...

 LOGIN messages do not affect the access level
C: LOGIN UNIT
S: (retained “full-control” rights)

5.6.2.6 Status responses
09 Jul 2008: This may be implemented according to a local convention, but is not universally required

 Basic login request, response is requested, successful attempt.
C: LOGIN UNIT USER=”MIKE”,PWD=”AXIA” $ACK $TRXI=555
S: ACK $TRXI=555 $STATUS=OK

Livewire System Control Protocol – v.13 page 28 of 83

Printed: February 26, 2010 IMCS UL Confidential

 Basic login request, no response requested, unsuccessful attempt.
C: LOGIN CONFIG USER=”MIKE”,PWD=”BBBB”
S: ACK $STATUS=AUTHORIZATION_FAILURE

5.6.3 Set property value
1) Success, no response requested
C: SET GPO#2 STATE=HIGH
S:

2) Success, ACK is requested
C: SET GPO#2 STATE=HIGH $ACK $TRXI=555
S: ACK $TRXI=555

3) Success, INDI is requested
C: SET GPO#2 STATE=HIGH $IND $TRXI=555
S: INDI GPO#2 STATE=HIGH $TRXI=555

4) Failure, can’t set value. In the second and third examples, although INDI was not requested, in the case of an
execution failure the owner uses it as the more informative form of response.
C: SET AIN#2 LWSE=DISABLE $IND $TRXI=555
S: INDI AIN#2 LWSE=ENABLE $TRXI=555 $STATUS=AUTHORI ZATION_FAILURE

 - OR -
C: SET AIN#2 LWSE=DISABLE $ACK $TRXI=555
S: INDI AIN#2 LWSE=ENABLE $TRXI=555 $STATUS=AUTHORI ZATION_FAILURE

 - OR -
C: SET AIN#2 LWSE=DISABLE
S: INDI AIN#2 LWSE=ENABLE $STATUS=AUTHORIZATION_FAI LURE

5) Failure, invalid value. In the second and third examples, although INDI was not requested, in the case of an
execution failure the owner uses it as the more informative form of response.
C: SET GPO#2 STATE=HIHH $IND $TRXI=555
S: INDI GPO#2 STATE=LOW $TRXI=555 $STATUS=INVALID_V ALUE

 - OR -
C: SET GPO#2 STATE=HIHH $ACK $TRXI=555
S: INDI GPO#2 STATE=LOW $TRXI=555 $STATUS=INVALID_V ALUE

 - OR -
C: SET GPO#2 STATE=HIHH
S: INDI GPO#2 STATE=LOW $STATUS=INVALID_VALUE

6) Failure, unknown property name. Responding with an INDI message would be rather confusing than useful
therefore ACK is used.
C: SET GPO#2 STAAT=HIGH $TRXI=555
S: ACK $TRXI=555 $STATUS=UNKNOWN_PROPERTY

7) Failure, unknown object. Responding with an INDI message would be rather confusing than useful therefore ACK
is used.
C: SET GPU#2 STATE=HIGH $TRXI=555
S: ACK $TRXI=555 $STATUS=UNKNOWN_OBJECT

5.6.4 Read property value
1) Success
C: GET AOUT#4 PEAK
S: INDI AOUT#4 PEAK=[2.4,2.7]

2) Failure, unknown property name
C: GET AOUT#4 PUUK $TRXI=555
S: ACK $TRXI=555 $STATUS=UNKNOWN_PROPERTY

5.6.5 Indicate property value
1) Owner indicates a property value upon an internal condition
C:

Livewire System Control Protocol – v.13 page 29 of 83

Printed: February 26, 2010 IMCS UL Confidential

S: INDI AOUT#4 PEAK=[2.4,2.7],RMS=[1.2,0.7]

5.6.6 Broadcast event notification
Broadcast notifications do not require subscription.

1) Change of an “event” property occurred; acknowledgement is not requested.
S: EVENT AOUT#4 CLIP=TRUE
C:

2) Property value change reported as an event; acknowledgement is requested; channel number is included in the
response to assist selective processing at m/c receivers.
S: EVENT CH#1001.GPI#2 STATE=HIGH $ACK $TRXI=555
C: ACK CH#1001 $TRXI=555

5.6.7 Subscribe to data flow
1) Observing a single property, each of two values handled as an event
 Signal in the normal range
S:
C:

 Subscribe to clipping threshold notifications
C: SUB AOUT#2 CLIP
S:

 Detected clipping
S: EVENT AOUT#2 CLIP=TRUE
C:

 Signal returned into the normal range
S: EVENT AOUT#2 CLIP=FALSE
C:

2) Observing two properties, the “TRUE” value of each is handled as an event
 Signal in the normal range
S:
C:

 Subscribe to clipping threshold notifications
C: SUB AOUT#2 CLIP,NOCLIP
S:

 Detected clipping
S: EVENT AOUT#2 CLIP=TRUE
C:

 Signal returned into the normal range
S: EVENT AOUT#2 NOCLIP=TRUE
C:

3) Observing a property value, events are associated with it, acknowledgements requested
 Detected state change
S:
C:

 Subscribe to GPIO input state notifications
C: SUB GPI#2 STATE $ACK $TRXI=555
S: ACK $TRXI=555

 Detected state change
S: EVENT GPI#2 STATE=HIGH $ACK $TRXI=555
C: ACK $TRXI=555

 Detected state change
S: EVENT GPI#2 STATE=LOW $ACK $TRXI=555
C: ACK $TRXI=555

4) Observing a property value, no events associated with it, source generates periodic refresh messages
 Meter data refresh interval
S:
C:

Livewire System Control Protocol – v.13 page 30 of 83

Printed: February 26, 2010 IMCS UL Confidential

 Subscribe to level meter data flow
C: SUB AOUT#4 PEAK,RMS $ACK $TRXI=555
S: ACK $TRXI=555

 Meter data refresh interval
S: INDI AOUT#4 PEAK=[2.4,2.7],RMS=[1.2,0.7]
C:

 Meter data refresh interval
S: INDI AOUT#4 PEAK=[2.8,2.6],RMS=[1.1,0.8]
C:

5.6.8 Unsubscribe from data flow
1) Stop observing all events and properties
 Detected clipping
S: EVENT AOUT#2 CLIP=TRUE
C:

 Unsubscribe from all notifications
C: UNSUB AOUT#2 $ACK $TRXI=555
S: ACK $TRXI=555

 AOUT#2 - any property change
S:
C:

2) Stop observing a single property
 Meter data refresh interval
S: INDI AOUT#2 RMS=-24
C:

 Unsubscribe from audio level updates
C: UNSUB AOUT#2 RMS $ACK $TRXI=555
S: ACK $TRXI=555

 Meter data refresh interval
S:
C:

 Detected clipping
S: EVENT AOUT#2 CLIP=TRUE
C:

Livewire System Control Protocol – v.13 page 31 of 83

Printed: February 26, 2010 IMCS UL Confidential

6. GPIO Application Protocol

6.1 Application

The GPIO protocol is intended to carry GPIO circuit state related data and commands to and from GPIO resources,
both implemented in physical hardware and emulated by software.

6.2 GPIO application objects

1. Objects of the GPIO application are:
- Logic input circuits
- Logic output circuits

2. Each logic circuit is assigned a LW channel number, and the LW channel number is the exclusive top-level entry

to the circuit.

3. Each logic circuit has a unique entity identifier in terms of the whole object collection represented by the LW

channel. The LW channel is viewed as a super-object.

4. The class name for LW channels is:

CH

5. The entity identifier is a positive integer decimal number, thus the object identifier for the resource collection

represented by LW channel is:
CH#<channel number>

6. The class names for logic input and output circuits are respectively:

GPI
GPO

7. The entity identifier is a positive integer decimal number, thus the object identifiers for logic input and output

circuits are respectively:
GPI#<circuit number>
GPO#<circuit number>

8. Full references to an input and output circuits:
CH#<channel number>.GPI#<circuit number>
CH#<channel number>.GPO#<circuit number>

9. Each input circuit has a property:
STATE - read-only

10. Each output circuit has the following properties:
STATE - read-only
PULSE - write-only

6.3 Properties

6.3.1 GPI STATE: State of input circuit

Description The STATE property of input circuits is read-only. It always reflects the actual state
of the circuit at the instant of reading.

Property name STATE

Data type Named constant

Livewire System Control Protocol – v.13 page 32 of 83

Printed: February 26, 2010 IMCS UL Confidential

Value range Enumerated: HIGH, LOW

6.3.2 GPO STATE: State of output circuit

Description The STATE property of output circuits is read-only. It always reflects the actual state
of the circuit at the instant of reading, but cannot be used for changing the output
state. This property is not needed for basic operations therefore it may stay
unimplemented, if the application does not require such capability. If implemented, it
could be used for:

• Command execution feedback
• Logic condition checking
• Synchronization of processes

Property name STATE

Data type Named constant

Value range Enumerated: HIGH, LOW

6.3.3 GPO PULSE: Command to output circuit

Description The PULSE property of output circuits is write-only. It determines the output circuit
state transition to be executed, including both setting a continuous sate and a timed
pulse of the required polarity. Full description of the transition consists of three
parameters:

• Level
• Pulse duration
• Inter-pulse time

Level determines whether the high or the low logic state will be applied. Pulse
duration determines how long the applied state should last. Inter-pulse time
determines the pause to wait after the end of a pulse before the next transition is
allowed to start.

Property name PULSE

Data type List of named and numeric constants

Value range Level, mandatory:
Enumerated: HIGH, LOW

Pulse duration, optional:
Positive decimal number in milliseconds
Zero has special meaning – steady state. This is the default.

Inter-pulse time, optional:
Positive decimal number in milliseconds
Zero has special meaning – pulses are allowed to overlap.
The default is using the value of pulse duration

Examples:
PULSE=[HIGH,100,200] - high pulse, duration 100ms, pause 200ms

PULSE=[HIGH,100] - high pulse, duration 100ms, pause 100ms

PULSE=[HIGH,100,0] - high pulse, duration 100ms, no pause required

PULSE=[HIGH,0] - high continuous state

PULSE=HIGH - high continuous state

6.4 Conventions and options

1. The application cases below are included to illustrate the constructs that are possible in terms of this protocol, but
it is not considered necessary to implement and use them all at a time. Selecting a subset to implement is a
subject of application/script developer convention.

Livewire System Control Protocol – v.13 page 33 of 83

Printed: February 26, 2010 IMCS UL Confidential

2. There are concrete names proposed for all objects, properties and events in the examples below. The object and

property names defined in the LWCP framework and the GPIO protocol sections above must be used exclusively.
The alias names of properties and per-event property names should be viewed rather as a recommendation, and in
any case they can be a device configuration option or a subject of application/script developer convention.

3. Events may be associated with the STATE properties of GPIO input circuits. For the most common applications

all input state changes would be handled as events. However, whether to treat a particular input state change as an
event or not, it may be also determined by a different convention, or be a device configuration option, or be
driven by the operation mode/state of the property owner.

4. Acknowledgement messages must be always used if application level feedback is required. Even if a reliable

point-to-point connection (TCP) is used, it can only guarantee reliable delivery of messages, but cannot provide
feedback about message analysis and execution status.

5. If UDP transport is used, either one of the following methods should be selected by a convention:

• Acknowledgements are used for delivery confirmation
• Messages are duplicated to ensure practically loss-less delivery

6. Transaction identifiers must be always included to reliably link command messages with responses, if the latter

are requested or expected. Even if TCP connection is used, race is still possible among concurrent operations
inside the communicating entities therefore the sequence of response messages may be unpredictable.

6.5 GPIO events

1. All GPIO input state changes belong to the event category, and they must generate event notification messages.

2. Each real event is allowed to launch a single notification process exclusively. It is up to the software

implementation to prevent duplicate notifications generated by alias names or dedicated per-event properties.
Either a fixed algorithm or configuration options may determine which concrete property would be used to report
each event.

Application case 1:
Input states are viewed as properties of individual circuits. No dedicated event properties are defined, and the actual
state values are reported as events.

Subscription request:

SUB CH#1001.GPI#1 STATE

Notification reports the input state value:

EVENT CH#1001.GPI#1 STATE=HIGH
EVENT CH#1001.GPI#1 STATE=LOW

Application case 2:
Input states are viewed as properties of the LW channel. Generic alias names are defined for states of the individual
circuits. No dedicated event properties are defined, and the actual state values are reported as events.

Alias names:
CH#1001.GPI#1 STATE � CH#1001 IN1_STATE
...
CH#1001.GPI# n STATE � CH#1001 IN n_STATE

Subscription request:

SUB CH#1001 IN1_STATE

Notification reports the input state value:

EVENT CH#1001 IN1_STATE=HIGH

Livewire System Control Protocol – v.13 page 34 of 83

Printed: February 26, 2010 IMCS UL Confidential

EVENT CH#1001 IN1_STATE=LOW

Application case 3:
Input states are viewed as properties of the LW channel. Meaningful alias names are defined that reflect the actual
functions of circuits. CR Monitor profile is used as an example. No dedicated event properties are defined, and the
actual state values are reported as events.

Alias names:
CH#1001.GPI#1 STATE � CH#1001 MUTE_CR_COMMAND
CH#1001.GPI#2 STATE � CH#1001 DIM_CR_COMMAND
CH#1001.GPI#3 STATE � CH#1001 EXT_PVW_ON_COMMAND
CH#1001.GPI#4 STATE � CH#1001 IN4_STATE
CH#1001.GPI#5 STATE � CH#1001 IN5_STATE

Subscription request:

SUB CH#1001 MUTE_CR_COMMAND

Notification reports the input state value:

EVENT CH#1001 MUTE_CR_COMMAND=HIGH
EVENT CH#1001 MUTE_CR_COMMAND=LOW

Application case 4:
Dedicated properties with meaningful names are defined for all events and attached to the LW channel. When an
event occurs, the corresponding property takes value “TRUE”, which in turn triggers a notification.

Event properties:
CH#1001.GPI#1 STATE=HIGH � CH#1001 MUTE_CR_APPLIED
CH#1001.GPI#1 STATE=LOW � CH#1001 MUTE_CR_RELEASED
CH#1001.GPI#2 STATE=HIGH � CH#1001 DIM_CR_APPLIED
CH#1001.GPI#2 STATE=LOW � CH#1001 DIM_CR_RELEASED
CH#1001.GPI#3 STATE=HIGH � CH#1001 EXT_PVW_APPLIED
CH#1001.GPI#3 STATE=LOW � CH#1001 EXT_PVW_RELEASED
CH#1001.GPI#4 STATE=HIGH � no event associated
CH#1001.GPI#4 STATE=LOW � no event associated
CH#1001.GPI#5 STATE=HIGH � no event associated
CH#1001.GPI#5 STATE=LOW � no event associated

Subscription request to all events of channel #1001:
SUB CH#1001

Notifications refer to the dedicated per-event properties:
EVENT CH#1001 MUTE_CR_APPLIED=TRUE
EVENT CH#1001 MUTE_CR_RELEASED=TRUE
EVENT CH#1001 EXT_PVW_APPLIED=TRUE

6.6 GPIO commands

1. A command can be sent to an output circuit by means of writing the command data to its PULSE property.

2. The requested output state transition must be started immediately upon receiving the command. The only

exception is the case where commands follow rapidly one after the other, so that the inter-packet pause requested
by the previous command is not expired yet.

3. GPIO output states follow commands and must not generate any notification messages, besides the confirmations

as requested by the command message.

Application case 1:
Output commands are viewed as properties of individual circuits therefore they are addressed to circuits.

Livewire System Control Protocol – v.13 page 35 of 83

Printed: February 26, 2010 IMCS UL Confidential

Setting continuous high logic state:
SET CH#1001.GPO#1 PULSE=HIGH

Sending a timed pulse: high logic state, duration 100ms, pause 200ms:
SET CH#1001.GPO#1 PULSE=[HIGH,100,200]

Application case 2:
Output commands are viewed as properties of a LW channel therefore they are addressed to the channel.

Alias names are defined for pulse properties of the individual circuits. Line source profile used as an example:
CH#1001.GPO#1 PULSE � CH#1001 ON_LAMP
CH#1001.GPO#2 PULSE � CH#1001 OFF_LAMP
CH#1001.GPO#3 PULSE � CH#1001 PVW_LAMP
CH#1001.GPO#4 PULSE � CH#1001 START_PULSE
CH#1001.GPO#5 PULSE � CH#1001 STOP_PULSE

Turning off the preview lamp:
SET CH#1001 PVW_LAMP=LOW

Start pulse, duration 100ms, pause 100ms:
SET CH#1001 START_PULSE=[HIGH,100]

6.7 GPIO configurations

6.7.1 Console – source/monitor, UDP multicast
1. The common GPIO multicast channel 239.192.255.4 is used for all communications.

2. Each GPIO port is assigned to a LW channel, and is receiving and transmitting on it. Console uses this channel to

communicate with the corresponding source or monitor.

3. Since all messages are multicast, there is no need for subscription – the receiver selects what it needs to be

listening to.

4. Since UDP transport is used, acknowledgements must be requested for delivery confirmation, or messages must

be duplicated, according to a convention.

5. Channel numbers must be included in the response messages to assist selective processing at m/c receivers.

6. Message sequence examples.

6.1 Acknowledgements are used for delivery confirmation:
 Source GPIO detects an input state change – TALK command from source
SOURCE: EVENT CH#1001 TALK_COMMAND=HIGH $ACK $TRXI=27
CONSOLE: ACK CH#1001 $TRXI=27

 Console turns on the TALK lamp
CONSOLE: SET CH#1001 TALK_LAMP=HIGH $ACK $TRXI=505
SOURCE: ACK CH#1001 $TRXI=505

6.2 Messages are duplicated. $TRXI used to link the duplicates:
 Source GPIO detects an input state change – TALK command from source
SOURCE: EVENT CH#1001 TALK_COMMAND=HIGH $TRXI=27
SOURCE: EVENT CH#1001 TALK_COMMAND=HIGH $TRXI=27
CONSOLE:

 Console turns on the TALK lamp
CONSOLE: SET CH#1001 TALK_LAMP=HIGH $TRXI=505
CONSOLE: SET CH#1001 TALK_LAMP=HIGH $TRXI=505
SOURCE:

Livewire System Control Protocol – v.13 page 36 of 83

Printed: February 26, 2010 IMCS UL Confidential

6.7.2 Console – source/monitor, TCP unicast
1. TCP connections are opened between the console and each of GPIO devices.

2. Each GPIO port is assigned to a LW channel. Console uses this channel number to address the port in the device.

3. Messages are copied individually to each recipient therefore subscription is required.

4. Since TCP transport is used, acknowledgements are optional, except for operations, which require application

level feedback. Whether to request them or not, in each particular case it should be the decision of the application
logic designer.

5. TCP connection isolates the receiver from message flows of other recipients, and transaction identifier is

sufficient for linking messages, therefore including the channel number in response messages is formally
redundant. However, having the channel number may appear convenient from the implementation viewpoint,
therefore using it or not should be a subject of convention.

6. Message sequence example:
 Console subscribes to all events of a source and the CR monitor, ACK requested
CONSOLE: SUB CH#1001 $ACK $TRXI=506
SOURCE: ACK $TRXI=506
CONSOLE: SUB CH#2101 $ACK $TRXI=507
MONITOR: ACK $TRXI=507

 Source GPIO detects an input state change – TALK command from source
SOURCE: EVENT CH#1001 TALK_COMMAND=HIGH
CONSOLE:

 Console turns on the TALK lamp
CONSOLE: SET CH#1001 TALK_LAMP=HIGH
SOURCE:

6.7.3 GPIO snake, TCP unicast
1. TCP connection is opened between every two devices to be operating in pair.

2. Each GPIO port is assigned to a LW channel. Inputs are sending and outputs are receiving event notifications on

this channel.

3. Messages are copied individually to each recipient therefore subscription is required.

4. Since TCP transport is used, acknowledgements are optional, except for operations, which require application

level feedback. Whether to request them or not, in each particular case it should be the decision of the application
logic designer.

5. TCP connection isolates the receiver from message flows of other recipients, and transaction identifier is

sufficient for linking messages, therefore including the channel number in response messages is formally
redundant. However, having the channel number may appear convenient from the implementation viewpoint,
therefore using it or not is a subject of convention.

6. Only the receiver’s internal logic, not this protocol, determines how to react on a received event notification. For

the snake configuration to work, the GPIO device must be somehow told to be activating outputs upon input
event notifications from other devices. A built-in fixed rule or a configuration option could determine how to link
in pairs source ports and destination ports of different units.

7. Message sequence example.

This example illustrates a complex setup with three devices:

- A is relaying events from B ports #1,2
- B is relaying events from A ports #1,2

Livewire System Control Protocol – v.13 page 37 of 83

Printed: February 26, 2010 IMCS UL Confidential

- C is relaying events from A port #1

 Unit A subscribes to all events of B, ports 1 and 2
GPIO A: SUB CH#2001 $ACK $TRXI=11 � GPIO B
GPIO B: ACK $TRXI=11
GPIO A: SUB CH#2002 $ACK $TRXI=12 � GPIO B
GPIO B: ACK $TRXI=12

 Unit B subscribes to all events of A, ports 1 and 2
GPIO B: SUB CH#1001 $ACK $TRXI=21 � GPIO A
GPIO A: ACK $TRXI=21
GPIO B: SUB CH#1002 $ACK $TRXI=22 � GPIO A
GPIO A: ACK $TRXI=22

 Unit C subscribes to all events of A, port 1
GPIO C: SUB CH#1001 $ACK $TRXI=31 � GPIO A
GPIO A: ACK $TRXI=31

 GPIO A detects an input state change on port 1
GPIO A: EVENT CH#1001 IN4_STATE=HIGH $ACK $TRXI=13 � GPIO B
GPIO A: EVENT CH#1001 IN4_STATE=HIGH $ACK $TRXI=14 � GPIO C
GPIO B: ACK $TRXI=13 � GPIO A
GPIO B: (set output circuit#4 of port#1: HIGH)
GPIO C: ACK $TRXI=14 � GPIO A
GPIO C: (set output circuit#4 of port#1: HIGH)

6.8 Proposed approaches for overcoming hardware cap acity limitations

1. The existing GPIO hardware has limited port/circuit capacity, which may appear insufficient for certain kinds of
applications.

2. The GPIO application protocol is not tied to any fixed hardware configuration, and it operates with logical object

entity numbers/IDs rather than physical. That allows using practically unlimited addressing capacity:
- The 32K channel number limit is inherited from the LW streaming architecture, and the GPIO protocol

allows exploiting all this capacity to identify GPIO circuit collections
- Unlimited number of circuits per channel, since there is no limit for the number of ASCII digits in the

protocol messages

3. Several hardware ports may be assigned the same LW channel number to add more circuits to the channel. This is

not fundamentally limited to a single hardware device. As long as user can ensure non-conflicting circuit
numbering either manually or with assistance of some automatic discovery and configuration protocol, the linked
ports may be located arbitrarily in many different devices

4. The simplest user interface method for configuring circuit numbers across multiple ports could be manually

assigning a base parameter to each hardware port. Then the logical number of a circuit would be calculated as the
base, plus the physical number, minus 1. Example:

GPIO port #1 - assign: Channel=1001, Base=1

ID of input circuit #1: CH#1001.GPI#1
...

ID of input circuit #5: CH#1001.GPI#5

ID of output circuit #1: CH#1001.GPO#1
...

ID of output circuit #5: CH#1001.GPO#5

GPIO port #4 - assign: Channel=1001, Base=6

ID of input circuit #1: CH#1001.GPI#6
...

ID of input circuit #5: CH#1001.GPI#10

ID of output circuit #1: CH#1001.GPO#6
...

ID of output circuit #5: CH#1001.GPO#10

Livewire System Control Protocol – v.13 page 38 of 83

Printed: February 26, 2010 IMCS UL Confidential

5. Assigning two independent base parameters for inputs and outputs would bring slightly more sophisticated
configuration capabilities. Example:

GPIO port #1 - assign: Channel=1001, Base for inputs=3, Base for outputs=5

ID of input circuit #1: CH#1001.GPI#3
...

ID of input circuit #5: CH#1001.GPI#7

ID of output circuit #1: CH#1001.GPO#5
...

ID of output circuit #5: CH#1001.GPO#9

6. If necessary, an independent number could be manually assigned per circuit. Example:
GPIO port #1 - assign: Channel=1001

Assign number to input circuit #1: 3
Obtained ID of input circuit #1: CH#1001.GPI#3

Assign number to input circuit #2: 44
Obtained ID of input circuit #2: CH#1001.GPI#44

Assign number to input circuit #3: 555
Obtained ID of input circuit #3: CH#1001.GPI#555

7. Alias names can be used to associate properties immediately with the channel. There is no limitation to the
addressing capacity in this case as well. Example:

GPIO port #1 - assign: Channel=1001

Assign alias name to pulse property of output circuit #1: ON_LAMP_01

Pulse property of output circuit #1 can be accessed as: CH#1001 ON_LAMP_01
...

Assign alias name to pulse property of output circuit #5: ON_LAMP_05

Pulse property of output circuit #5 can be accessed as: CH#1001 ON_LAMP_05
...

GPIO port #5 - assign: Channel=1001

Assign alias name to pulse property of output circuit #1: ON_LAMP_21

Pulse property of output circuit #1 can be accessed as: CH#1001 ON_LAMP_21
...

Assign alias name to pulse property of output circuit #5: ON_LAMP_25

Pulse property of output circuit #5 can be accessed as: CH#1001 ON_LAMP_25

Livewire System Control Protocol – v.13 page 39 of 83

Printed: February 26, 2010 IMCS UL Confidential

7. User Panel Application Protocol

7.1 Application

The User Panel Application Protocol is intended to provide interface between all kinds of user interface controls and
application entities controlled by them and/or using them for output.

Eventually the protocol may have to support up to all of the following control types, and maybe even more:

• Single keys
• Rotary controls
• Joysticks
• Keypads
• LEDs
• Text/bitmap displays
• Graphical screens

Many practical applications may need just part of this variety, therefore it is acceptable to not specify and implement
support for all control types and all properties immediately, but add them gradually as the requirements evolve.

7.2 User panel application objects

7.2.1 General
1. Objects of the user panel application are user interface controls of various types.

2. Several different object classes are defined for various types of interface controls. The class membership of the

object determines its properties.

3. Some properties are essentially equivalent for different object classes. In such cases common property definitions

apply.

7.2.2 Object addressing models
4. Two alternative addressing models are defined:

4.1 Addressing based on information flows. In terms of this model a LW channel is assigned to a certain subset of

application operations as the communications media. All interface controls used by these operations are viewed
as elements of the assigned LW channel. Each interface control has a unique entity identifier in terms of the
channel as a super-object.

Full reference to an interface control, using the channel-based addressing model:

CH#<channel number>.<Interface control entity ID>

4.2 Addressing based on physical hardware. In terms of this model all interface controls are addressed relative to the

physical hardware module where they are installed. Each interface control has a unique entity identifier in terms
of its hardware module.

The class names for hardware modules are:

MOD_USER – User panel
(Other classes for different module types may be defined later)

The entity identifier is a positive integer decimal number, and the object identifier for the whole hardware
module is:

MOD_USER#<module number>

Livewire System Control Protocol – v.13 page 40 of 83

Printed: February 26, 2010 IMCS UL Confidential

Full reference to an interface control, using the hardware-based addressing model:
MOD_USER#<module number>.<Interface control entity ID>

4.3 Preferring one or the other addressing model may depend on the hardware and software structure and

configuration methods of the involved application entities. Selecting one of these models is up to a convention
by application/script developers.

7.2.3 Control types

7.2.3.1 Button
The “button” control type applies to devices consisting of the following:

- A single two-state switch for command input
- Optionally, a single indication device, mechanically or logically coupled with the switch. This indication

device supports only limited text and graphical output capabilities. Another control type must be used for
full-featured graphical screens. Incandescent bulbs are not distinguished from single-colored LEDs.

The class name for controls of the “button” type is:

BUT

The entity identifier is a positive integer decimal number, and the full object identifier is one of the following:

CH#<channel number>.BUT#<control number>
MOD_USER#<module number>.BUT#<control number>

The following properties are defined for controls of the “button” type:
KEY - read-only
IND - write-only
TEXT - write-only
BITMAP - write-only
ICON - write-only
FORECOLORON - write-only
BACKCOLORON - write-only
FORECOLOROFF - write-only
BACKCOLOROFF - write-only

The protocol supports just a single picture stored in an indication device at a time. The TEXT, BITMAP, and ICON
properties represent three mutually exclusive methods for specifying the picture. Writing to any one of them clears
the contents of the rest two properties and replaces the previous picture with the new one.

7.2.3.2 Text/bitmap display
The “display” control type applies to devices consisting of a single indication device. This indication device supports
only limited text and graphical output capabilities. Another control type must be used for full-featured graphical
screens. Incandescent bulbs are not distinguished from single-colored LEDs.

Formally this control type is equivalent to the indication component of the composite “button” object, it is a subset of
the “button”. A dedicated control type is introduced for it exclusively to avoid confusion that may arise from using a
name that obviously does not match the function of the actual hardware device.

The class name for controls of the “display” type is:

DISP

The entity identifier is a positive integer decimal number, and the full object identifier is one of the following:
CH#<channel number>.DISP#<control number>
MOD_USER#<module number>.DISP#<control number>

The following properties are defined for controls of the “display” type:

Livewire System Control Protocol – v.13 page 41 of 83

Printed: February 26, 2010 IMCS UL Confidential

IND - write-only
TEXT - write-only
BITMAP - write-only
ICON - write-only
FORECOLORON - write-only
BACKCOLORON - write-only
FORECOLOROFF - write-only
BACKCOLOROFF - write-only

The protocol supports just a single picture stored in an indication device at a time. The TEXT, BITMAP, and ICON
properties represent three mutually exclusive methods for specifying the picture. Writing to any one of them clears
the contents of the rest two properties and replaces the previous picture with the new one.

7.2.3.3 Other control types - TBD
• Rotary control
• Joystick
• Keypad
• LED
• Graphical screen

7.3 Properties

7.3.1 KEY: State of the key

Description The KEY property is read-only. It always reflects the actual state of the key at the
instant of reading. Depending on the control type, this property may be associated
with a simple push-button or the click function of a rotary control or joystick.

Property name KEY

Data type Named constant

Value range Enumerated: UP, DOWN

7.3.2 IND: State of the indication device

Description The IND property is write-only. It determines the state of the indication device as a
certain ON-OFF cadence. The value of this property is the name of a predefined
periodic blinking pattern, which determines the actual cadence, including steady
on/off states as special cases. Once a pattern is selected, the indication device
periodically switches the fore and back colors between the pairs defined for ON and
OF states respectively, see the color control properties below.

Property name IND

Data type Named constant

Value range Enumerated:
ON – continuous ON state
OFF – continuous OFF state
FLASH_1000 – symmetric period: 1000ms ON / 1000ms OFF
FLASH_500 – symmetric period: 500ms ON / 500ms OFF
FLASH_250 – symmetric period: 250ms ON / 250ms OFF
FLASH_125 – symmetric period: 125ms ON / 125ms OFF
FLASH_375_125 – asymmetric period: 375ms ON / 125ms OFF
DBL_WINK_125 – 125ms ON / 125ms OFF/ 125ms ON / 625ms OFF

TRPL_WINK_125 – 125ms ON / 125ms OFF/ 125ms ON / 125ms OFF /

Livewire System Control Protocol – v.13 page 42 of 83

Printed: February 26, 2010 IMCS UL Confidential

 125ms ON / 375ms OFF
DBL_WINK_125_500 – 125ms ON / 125ms OFF/ 500ms ON / 250ms OFF

More enumerated values may be added to the list as long as they are supported by
hardware.
Notes:
Although no formal restriction applies to pattern names, for clarity sake it is
recommended that the names are meaningful and comply with a common style.
Obviously, the pattern names above are constructed following certain logic, still
trying to define a universal formal algorithm seems impractical. Therefore the
primary goal, when giving new names, should be intuitiveness of each individual
name taken separately, as well as in context with the other names.
This is the logic behind the names defined above:

• All patterns are built on the basis of a common smallest time unit of 125ms.
All ON/OFF intervals are multiples of 125ms. Time interval numbers
appearing in names are expressed in milliseconds.

• All “FLASH” patterns have simple cycle consisting of one ON interval and
one OFF interval, and the name reflects the pulse duration and on/off ratio in
the cadence.

• The “WINK” patterns are groups of pulses repeated once in a longer period,
and the name reflects the number and duration of pulses in the period.

Examples:
IND=ON - continuous ON state
IND=FLASH_500 - flashing 500ms – 500ms
IND=DBL_WINK_125 - two pulses following rapidly, 125ms each,

 series repeated with a period of 1 second

7.3.3 TEXT: ASCII characters to display

Description The TEXT property is write-only. It determines the text to be displayed on the
indication device. Except line breaks, which are allowed in the text value, the
protocol does not support any other layout control. Fixed font and number of
character positions on the display is assumed. The characters will be displayed
starting from the top left display position to the right bottom position. If the display
area is organized in more than a single line, the first line will be filled to the end, after
which the first character of the second line will be filled, and so continue until the last
character in the command. If the number of characters in the command is less than the
display area, the remaining display positions shall be cleared. Characters not fitting in
the display area shall be ignored. Line break, if encountered, will skip the end of the
current line and position the next character at the beginning of the next display line.

Property name TEXT

Data type Literal constant

Value range No content or length limitations in the protocol. The indication device capacity
determines the final display.

Examples for a single-row, 12-char display:

TEXT=”Studio Guest” - Full display
TEXT=”Host Mic ” - Full display. The trailing spaces

 overwrite the previous content
TEXT=”Host Mic” - Produces the same result as above, the

 missing positions are cleared.
TEXT=”” - Clears all display area

Examples for a display 3 rows by 6 chars:

Livewire System Control Protocol – v.13 page 43 of 83

Printed: February 26, 2010 IMCS UL Confidential

TEXT=”source HOST MIC ” - Produces display:
 |source|
 | HOST |
 | MIC |

The same can be achieved by means of using line breaks:
TEXT=”source/n HOST/n MIC” - Produces display:

 |source|
 | HOST |
 | MIC |

TEXT=”SELECT” - Produces display:
 |SELECT|
 | |
 | |

TEXT=” SELECT xyz” - Produces display:
 | |
 |SELECT|
 | |

TEXT=”” - Clears the display:
 | |
 | |
 | |

7.3.4 BITMAP: Bitmap pattern to display

Description The BITMAP property is write-only. It determines a single-color, two-state (on/off)
bitmap pattern to be displayed on the indication device. The pattern is coded in an
array of byte values. The physical format of the display area determines what data
mapping scheme is most efficient and intuitive in each particular case, therefore no
universal rule is specified by the protocol, and it is left up to the application/script
developers. If the amount of data in the command is less than the display area, the
missing bits should be stuffed with zeros (turned off) by the resource. Data not fitting
in the display area shall be ignored.

Property name BITMAP

Data type Array of byte values in hex presentation.

Value range No content or length limitations in the protocol. The indication device capacity
determines the final display.

Examples for a LED matrix of 5 rows by 7 columns:
Data mapping convention: one byte per row, starting from top, low-order bits fill the
row from right, the highest bit of each byte is ignored.

BITMAP=[0x70,0x70,0x06] - Produces display:
 |xxx |
 |xxx |
 | xx |

BITMAP=[0xF0,0xF0,0x86,0x55] - Produces the same display. The excess
 high-order bits and the whole excess
 byte were ignored:
 |xxx |
 |xxx |
 | xx |

BITMAP=[0x70,0x70] - The missing bits were stuffed with
 zeros:
 |xxx |
 |xxx |

Livewire System Control Protocol – v.13 page 44 of 83

Printed: February 26, 2010 IMCS UL Confidential

 | |

BITMAP=0 - Clears the display:
 | |
 | |
 | |

7.3.5 ICON: Icon to display

Description The ICON property is write-only. It determines a predefined graphical image to be
displayed on the indication device. The data sets that define images are referenced by
names. Matching of the image data with the physical display device must be ensured
in the resource internally. If an undefined image name is specified in the command, it
must be ignored, and the display must stay unchanged.

Property name ICON

Data type Named constant

Value range Enumerated names, assigned to predefined images by a convention.
Examples:

ICON=SATELLITE
ICON=LOCKED

7.3.6 FORECOLORON: foreground color for ON state
BACKCOLORON: background color for ON state
FORECOLOROFF: foreground color for OFF state
BACKCOLOROFF: background color for OFF state

Description Philosophy:
These 4 color control properties implement abstraction from the hardware design.
Regardless of the indication device type, the user application should specify the
required visual effect, rather than directly drive hardware elements of the indication
device. This isolates the user scripts from knowledge of the specific hardware
technology and physics behind forming the graphical image. The achieved end-user
effect is that the user scripts appear immune against hardware variance across module
versions, which may be encountered in result of gradually adding new modules
manufactured in different times, as well as replacing faulty or obsolete modules.
Properties:
The 4 color control properties determine two color pairs – one fore and one back
color per each of the 2 indication device states – turned on or off. The same
properties control colors regardless of the pattern type – continuous state or blinking.
Indication device switches between the two color pairs according to the cadence
determined by the blinking pattern.
All these properties are write-only.

• The FORECOLORON property determines the color of a multi-color LED,
or the color of the picture on a text/bitmap display when it is turned on.

• The BACKCOLORON property determines the color of the background on
a text/bitmap display when it is turned on.

• The FORECOLOROFF property determines the color of a multi-color LED,
or the color of the picture on a text/bitmap display when it is turned off.

• The BACKCOLOROFF property determines the color of the background on
a text/bitmap display when it is turned off.

The universal method for color encoding is RGB, 1 data byte per color. Enumerated
color names may be assigned by a convention to selected RGB values. This allows
using more compact and readable commands if the number of color variants is small,
as well as for most frequently needed operations. RGB values not supported by the
indication device must be replaced with the closest match in the resource. This color

Livewire System Control Protocol – v.13 page 45 of 83

Printed: February 26, 2010 IMCS UL Confidential

translation rule is not defined by the protocol and is completely up to the
implementation.

Property name FORECOLORON
BACKCOLORON
FORECOLOROFF
BACKCOLOROFF

Data type • Array of 3 byte values in decimal or hex presentation for arbitrary RGB
• Named constant for enumerated predefined colors

Value range Each byte in the RGB array determines the intensity of the corresponding color in the
range 0..255, where 0 is off, and 255 is max.
Examples for arbitrary RGB:

FORECOLORON=[255,255,255] - white full brightness
FORECOLORON=[0xFF,0xFF,0xFF] - white full brightness
BACKCOLORON=[128,128,128] - white half brightness
FORECOLORON=[255,0,0] - red full brightness
FORECOLOROFF=[0,255,0] - green full brightness
FORECOLOROFF=[0,0,0] - off (black)

Examples for predefined colors:
FORECOLORON=WHITE is equivalent to FORECOLORON=[255,255,255]

FORECOLORON=BLUE is equivalent to FORECOLORON=[0,0,255]

7.4 Message sequence examples

7.4.1 Key events
Application case 1:
Key states are viewed as properties of individual controls, addressed by hardware module. No dedicated event
properties are defined, and the actual state values are reported as events.

 Subscribe to key events
C: SUB MOD_USER#12.BUT#4 KEY
S:

 Key pressed and released
S: EVENT MOD_USER#12.BUT#4 KEY=DOWN
C:
S: EVENT MOD_USER#12.BUT#4 KEY=UP
C:

Application case 2:
Key states are viewed as properties of a LW channel. Meaningful alias names are defined that reflect the actual
functions of keys. No dedicated event properties are defined, and the actual key state values are reported as events.

Alias names:
CH#1001.BUT#1 KEY � CH#1001 KEY_ROUTE1
CH#1001.BUT#2 KEY � CH#1001 KEY_ROUTE2
CH#1001.BUT#3 KEY � CH#1001 KEY_ROUTE3
CH#1001.BUT#4 KEY � CH#1001 KEY_TAKE

 Subscribe to all key events on channel
C: SUB CH#1001
S:

 Key “Select route 2” pressed and released
S: EVENT CH#1001 KEY_ROUTE2=DOWN
C:
S: EVENT CH#1001 KEY_ROUTE2=UP
C:

 Key “Take selection” pressed and released

Livewire System Control Protocol – v.13 page 46 of 83

Printed: February 26, 2010 IMCS UL Confidential

S: EVENT CH#1001 KEY_TAKE=DOWN
C:
S: EVENT CH#1001 KEY_TAKE=UP
C:

Application case 3:
Dedicated properties with meaningful names are defined for all events and attached to the LW channel. When an
event occurs, the corresponding property takes value “TRUE”, which in turn triggers a notification.

Event properties:
CH#1001.BUT#1 KEY=DOWN � CH#1001 ROUTE1_SELECTED
CH#1001.BUT#1 KEY=UP � no event associated
CH#1001.BUT#2 KEY=DOWN � CH#1001 ROUTE2_SELECTED
CH#1001.BUT#2 KEY=UP � no event associated
CH#1001.BUT#3 KEY=DOWN � CH#1001 ROUTE3_SELECTED
CH#1001.BUT#3 KEY=UP � no event associated
CH#1001.BUT#4 KEY=DOWN � CH#1001 TAKE_COMMAND
CH#1001.BUT#4 KEY=UP � no event associated

 Subscribe to all key events on channel
C: SUB CH#1001
S:

 Key “Select route 2” pressed and released
S: EVENT CH#1001 ROUTE2_SELECTED=TRUE
C:

 Key “Take selection” pressed and released
S: EVENT CH#1001 TAKE_COMAND=TRUE
C:

7.4.2 Commands to indication device
Turn on a plain LED, addressed to a hardware module:
C: SET MOD_USER#12.BUT#4 IND=ON
S:

Set colors and flash a multi-color LED, addressed to a hardware module:
C: SET MOD_USER#12.BUT#5 FORECOLORON=RED,FORECOLOROFF=GREEN
S:
C: SET MOD_USER#12.BUT#5 IND=FLASH_500
S:

Set colors and write text, 3 x 6 chars, to an LCD button, addressed to a LW channel:
C: SET CH#1001.BUT#6 FORECOLORON=BLACK,BACKCOLORON=WHITE,

FORECOLOROFF=BLACK,BACKCOLOROFF=BLACK
S:
C: SET CH#1001.BUT#6 TEXT=”source HOST MIC ”
S:
C: SET CH#1001.BUT#6 IND=ON
S:

Change the background color, replace the formerly written text on the LCD button with an icon, start flashing
rapidly:
C: SET CH#1001.BUT#6 BACKCOLORON=BLUE
S:
C: SET CH#1001.BUT#6 ICON=SATELLITE
S:
C: SET CH#1001.BUT#6 IND=FLASH_125
S:

Set colors and write text, 10 chars in a single line, to a green LED alpha matrix:
C: SET MOD_USER#12.DISP#1 FORECOLORON=WHITE,BACKCOLORON=BLACK,

FORECOLOROFF=BLACK,BACKCOLOROFF=BLACK
S:
C: SET MOD_USER#12.DISP#1 TEXT=”Player 01 ”

Livewire System Control Protocol – v.13 page 47 of 83

Printed: February 26, 2010 IMCS UL Confidential

S:
C: SET MOD_USER#12.DISP#1 IND=ON
S:

Livewire System Control Protocol – v.13 page 48 of 83

Printed: February 26, 2010 IMCS UL Confidential

8. Console Remote Control Protocol

8.1 Application

The Console Remote Control Protocol (CRCP) is intended to provide interface between the console application
control entity and all kinds of external entities with the following purposes:

1) Controlling the console operation as a reaction on certain conditions in the external entity
2) Observing certain aspects of the console operation, to provide reaction in the external entity

CRCP supports basic access control using a simple login procedure.

This protocol deals with the actual operation states and the relevant controls in application components. Although
some operation control attributes may have common names with the related items in configuration data tables, it
must be understood that this protocol is not intended for direct viewing and editing of the stored configuration data.
If such access in terms of LWCP would ever be needed, a dedicated remote configuration protocol with appropriate
interface objects would be introduced for this purpose.

8.2 Common application control

8.2.1 Objects
At the root level the application control entity represents taken together all the software components that implement
the console operation logic.

The class name for the application control entity is:

AppControl

As long as there is just one such entity per console, no entity identifier is needed.

Note for future developments:

If needed, individual components of the console application would be addressable as nested objects, lower
by one structure level. For example:

AppControl.UIL - User interface layer
AppControl.SHC - Show profile control component

8.2.2 Properties

8.2.2.1 Overview
The following properties are defined:

ShowProfID - Show profile identifier
ShowProfName - Show profile name
ShowProfStat - Show profile loading status

GpioList - GPIO resource list
fader_list - List of the actually installed fader numbers RQ 4610

Note, 18 Sep 2009: The fader_list property is an interim solution. It is planned to be
replaced by an XML structure for significantly extended and open
functionality.

8.2.2.2 ShowProfID: Show profile identifier

Description Object: AppControl
The ShowProfID property is read-and-write. Writing to this property determines the
show profile to be loaded. Reading it returns the currently selected show profile

Livewire System Control Protocol – v.13 page 49 of 83

Printed: February 26, 2010 IMCS UL Confidential

identifier. Whenever the current show profile changes for any reason, the console
must generate an event notification, including the new ID and name, and loading
status.

Property name ShowProfID

Data type Numeric, hex or decimal, positive integer

Value range All 32-bit values are allowed

8.2.2.3 ShowProfName: Show profile name

Description Object: AppControl
The ShowProfName property is read-only. Reading it returns the name of the
currently selected show profile as defined in show profile data.

Property name ShowProfName

Data type Literal constant

Value range No content or length limitations are defined by this protocol. The actual format and
content are determined by show profile data.

8.2.2.4 ShowProfStat: Show profile loading status

Description Object: AppControl
The ShowProfStat property is read-only. Reading it returns the actual status of the
currently selected show profile.

Property name ShowProfStat

Data type Named enumerated constant

Value range LOADING, READY

8.2.2.5 GpioList: GPIO resource list
RQ 4740

Description Object: AppControl
The GpioList property is read-only. Reading it returns the list of GPIO circuits
currently in use by the console application. Each list entry consists of a circuit ID and
function description. This property does not deal with stored configuration data.

Property name GpioList

Data type Encapsulated data

Value range

Document with the following structure:
 <list>

<input>
<lwch>(LW channel number)</lwch>
<circuit>(circuit number)</circuit>
<function>(textual description)</function>

</input>
...
<output>

<lwch>(lw channel number)</lwch>
<circuit>(circuit number)</circuit>
<function>(textual description)</function>

</output>
...

 </list>

Empty list:

Livewire System Control Protocol – v.13 page 50 of 83

Printed: February 26, 2010 IMCS UL Confidential

 <list></list>

8.2.2.6 fader_list: List of the actually installed fader numbers
RQ 4610

Description Object: AppControl
The fader_list property is read-only. Reading it returns the list of actually
installed fader numbers.

Property name fader_list

Data type List

Value range The list contains positive integers, corresponding to the fader channel numbers.

8.2.3 Commands and events

8.2.3.1 Legend
C Client Represents the external entity communicating with the console application
S Server Represents the console application as a subject of CRCP
Console Represents the internal algorithms of the console application

8.2.3.2 Trigger a profile change
The command to change profile can be given only using the profile ID. The name property is informative only.

C: SET AppControl ShowProfID=<new profile ID>
S: EVENT AppControl ShowProfID=<ID>,ShowProfName=<n ame>,ShowProfStat=LOADING

Note: An explicit ACK or INDI may be requested in the SET command, but it seems redundant here, since the
event notification should follow automatically.

8.2.3.3 Determine what the current profile and its status is
Read all in a single command:
C: GET AppControl ShowProfID,ShowProfName,ShowProfS tat
S: INDI AppControl ShowProfID=<ID>,ShowProfName=<na me>,ShowProfStat=READY

Read a single property in a command:
C: GET AppControl ShowProfName
S: INDI AppControl ShowProfName=<name>

8.2.3.4 Observe profile changes
Any change of any one or several attributes from the group {ShowProfID, ShowProfName, ShowProfStat}

will trigger an event report. All three properties will be included in all event reports.

To receive these profile change notifications, it is required and sufficient that the client were subscribed to the profile
loading status property.

Console operator: change profile via console interf ace
Console: start loading the new profile
S: EVENT AppControl ShowProfID=<ID>,ShowProfName=<n ame>,ShowProfStat=LOADING
Console: loading the new profile completed
S: EVENT AppControl ShowProfID=<ID>,ShowProfName=<n ame>,ShowProfStat=READY

8.2.3.5 Obtain a list of GPIO resources
C: GET AppControl GpioList
S: INDI AppControl GpioList=%BeginEncap%(list data goes here)%EndEncap%

Livewire System Control Protocol – v.13 page 51 of 83

Printed: February 26, 2010 IMCS UL Confidential

Returning empty list:
S: INDI AppControl GpioList=%BeginEncap%<list></lis t>%EndEncap% RQ 4740

8.2.3.6 Obtain a list of actually installed physical fader numbers
RQ 4610
C: GET AppControl fader_list
S: INDI AppControl fader_list=[1,2,3,4,11,12]

Returning empty list:
S: INDI AppControl fader_list=[]

8.2.4 Message sequence examples
These operations use a TCP point-point connection. Guaranteed delivery is assumed.

 Client logs in to the console application control. Only basic login is presently defined, no access levels.
C: LOGIN AppControl USER=MIKE,PWD=AXIA $ACK $TRXI=5 55
S: ACK $TRXI=555 $STATUS=OK

 Client subscribes to profile change events
C: SUB AppControl ShowProfStat

 Client inquires the current profile identity and status
C: GET AppControl ShowProfID,ShowProfName,ShowProfS tat
S: INDI AppControl ShowProfID=1,ShowProfName=”Defau lt”,ShowProfStat=READY

 Console operator selects a profile via local interface, console starts loading, and a notification is reported.
Console operator: change profile via console interf ace
Console: start loading the new profile
S: EVENT AppControl ShowProfID=2,ShowProfName=”Mike ’s Morning”,ShowProfStat=LOADING
C: <Do whatever is required as the reaction>

 Profile completes loading
Console: loading the new profile completed
S: EVENT AppControl ShowProfID=2,ShowProfName=”Mike ’s Morning”,ShowProfStat=READY
C: <Do whatever is required as the reaction>

 Client obtains the profile list using the resource discovery protocol …
C: GET ConfigData ShowProfList
S: INDI ConfigData ShowProfList=%BeginEncap%

<list> RQ 4740
<showprofile>

<id>1</id>
<name>Default</name>

</showprofile>
<showprofile>

<id>2</id>
<name>Mike’s Morning</name>

</showprofile>
<showprofile>

<id>3</id>
<name>Night Music</name>

</showprofile>
</list>
%EndEncap%

 … and triggers changing the active profile on console
C: SET AppControl ShowProfID=3
Console: start loading the new profile
S: EVENT AppControl ShowProfID=3,ShowProfName=”Nigh t Music”,ShowProfStat=LOADING
Console: loading the new profile completed
S: EVENT AppControl ShowProfID=3,ShowProfName=”Nigh t Music”,ShowProfStat=READY

 Client obtains from application control the list of currently used GPIO resources …

Livewire System Control Protocol – v.13 page 52 of 83

Printed: February 26, 2010 IMCS UL Confidential

C: GET AppControl GpioList
S: INDI AppControl GpioList=%BeginEncap%

<list> RQ 4740
<input>

<lwch>1001</lwch>
<circuit>1</circuit>
<function>CR monitor: MUTE command</function>

</input>
<output>

<lwch>1001</lwch>
<circuit>1</circuit>
<function>CR monitor: ON AIR lamp</function>

</output>
<output>

<lwch>1251</lwch>
<circuit>4</circuit>
<function>Source: Start pulse</function>

</output>
</list>
%EndEncap%

 … and sends a 100ms start pulse to the source on channel #1251
C: SET CH#1251.GPO#4 PULSE=[HIGH,100]

8.3 Console operations

8.3.1 Application
v.12 This protocol module is intended to be used for remote control over console fader channels, monitors, aux
sends and returns.

In a typical setup the PathFinder application would act in the role of the controller. In this case a point-to-point
control connection is to be established via TCP into port 4010 (decimal) on Element. The PathFinder must be aware
of the controlled Element’s IP unicast address.

Application message delivery is assumed to be reliable by means of TCP, and not requiring any additional methods
to be implemented in the application layer.

8.3.2 Objects

8.3.2.1 Source ID – Livewire channel
This addressing method directs the control to the fader channel, where the specified source is currently taken, instead
of a sending the control to a physical fader channel number. Since the source ID (LW channel number) is used for
addressing, the control automatically follows the source to any physical fader.

The class name for LW channel is:

LwCH

The entity identifier is a LW channel number, and thus a full Object ID for a LW channel is:

LwCH #<channel number>

Example:
LwCH #1271

8.3.2.2 Physical fader channel
This addressing method directs the control to a concrete fader channel number regardless of the source ID, or no
source selected on it.

The class name for fader channel is:

FaCH

Livewire System Control Protocol – v.13 page 53 of 83

Printed: February 26, 2010 IMCS UL Confidential

The entity identifier is the number assigned to a fader, and thus a full Object ID for a fader channel is:

FaCH#<fader number>

Example:
FaCH#3

8.3.2.3 Aux return
RQ 3777
This object represents an aux return channel. Presently no substructures are defined for the aux return object.

The class name for aux return is:

aux_ret

A full Object ID for an aux return is:

aux_ret#<aux return channel number>

Example:
aux_ret#1

8.3.2.4 Monitor 1
RQ 3777
This object represents the Monitor 1 circuit of the monitoring part of the console.

The class name for Monitor 1 is:

monit1

There is just one such entity per console, therefore entity identifier is not needed.

There are two addressable substructures defined in the Monitor 1 circuit, which represent the external source inputs 1
and 2. Their class names are:

ext1
ext2

There is just one entity of ext1 and one of ext2, therefore entity identifiers are not needed.

Full Object IDs for the ext source inputs are:

monit1.ext1
monit1.ext2

8.3.2.5 Monitor 2
RQ 3777
This object represents the Monitor 2 circuit of the monitoring part of the console.

The class name for Monitor 2 is:

monit2

There is just one such entity per console, therefore entity identifier is not needed.

There is one addressable substructure defined in the Monitor 2 circuit, which represents the external source input. Its
class name is:

ext1

There is just one entity of ext, therefore entity identifier is not needed.

Full Object ID for the ext source input is:

monit2.ext1

8.3.2.6 Preview
RQ 3777
This object represents the Preview circuit of the monitoring part of the console.

Livewire System Control Protocol – v.13 page 54 of 83

Printed: February 26, 2010 IMCS UL Confidential

The class name for Preview is:
prev

There is just one such entity per console, therefore entity identifier is not needed.

There is one addressable substructure defined in the Preview circuit, which represents the external source input. Its
class name is:

ext1

There is just one entity of ext, therefore entity identifier is not needed.

Full Object ID for the ext source input is:

prev.ext1

8.3.3 Properties

8.3.3.1 Overview
The present set of properties covers only the immediately requested remote control capabilities. More properties may
be added at any time to include support for other console operations.

Fader and aux return input channel control logic states. These properties can be used to remotely read or set the
required state, as well as their changes can be reported as events to other applications:

ON_State - ON/OFF state RQ 4738
Mute_State - Fader channel input muting state
Asg_PGM1 - PGM1 assignment state RQ 4738

Asg_PGM2 - PGM2 assignment state RQ 4738

Asg_PGM3 - PGM3 assignment state RQ 4738

Asg_PGM4 - PGM4 assignment state RQ 4738

Input channel fader gain. This property can be used to remotely read or set the fader gain in the fader or aux return
input channel. Although it is allowed too, the fader gain changes are unlikely to be reported as events to other
applications:

Fader_Gain - Fader gain RQ 4738

Console user interface push-button states. The following properties reflect user actions. Their value changes can be
reported as events to other applications:

ON_But - State of the fader channel “ON” button
OFF_But - State of the fader channel “OFF” button
sp_ext1_but - State of the monitor speaker source selector “ext1” button RQ 4736
sp_ext2_but - State of the monitor speaker source selector “ext2” button RQ 4736

RQ 3692 RQ 3777
Input source. These properties can be used to remotely select a source, as well as to learn what source is selected and
its loading status, either by querying the console application control data, or via event reports.

src_list - List of source profiles, filtered for the individual fader channel
src_id - Source profile identifier

src_name - Source profile name
src_stat - Source profile loading status
src_lwch - LW channel of the associated physical source

8.3.3.2 ON/OFF state

Description Objects: LwCH, FaCH, aux_ret RQ 4738
This property is read and write. It allows reading and setting the fader channel or aux
return On/Off state. Every state change is followed by an event notification.

Property name ON_State

Livewire System Control Protocol – v.13 page 55 of 83

Printed: February 26, 2010 IMCS UL Confidential

Data type Named constant

Value range Enumerated: ON,OFF

8.3.3.3 Fader channel input muting state

Description Objects: LwCH, FaCH
This property is read and write. It allows reading and setting the fader channel input
muting state. Every state change is followed by an event notification.

Property name Mute_State

Data type Named constant

Value range Enumerated: NORMAL,MUTED

8.3.3.4 Fader channel mix assignment states

Description Objects: LwCH, FaCH, aux_ret RQ 4738
These properties are read and write. They allow reading and setting the fader channel
or aux return mix assignment states. Every state change is followed by an event
notification.

Asg_PGM4 is representing a ganged switch, controlling three mix assignments
synchronously – PGM4, RECORD, and PHONE..

Property name Asg_PGM1, Asg_PGM2, Asg_PGM3, Asg_PGM4

Data type Named constant

Value range Enumerated: ON,OFF

8.3.3.5 Fader gain

Description Objects: LwCH, FaCH, aux_ret RQ 4738
This property is read and write. It allows reading and setting the fader gain in a fader
input or aux return input channel. Event notifications for gain value changes are not
required.
Note: The aux return fader gain is also called “aux return master gain” in other
documentation.

Property name Fader_Gain

Data type Decimal fixed point

Value range • Represents the gain value in dB
• The protocol allows arbitrary values, limited only by the data type
• The surface application will trim the values received with SET commands to the

following meaningful range:
–80 .. +10dB, OFF (hex value 0x8000)

• All values outside this numeric range will be interpreted by the application either
as the maximal gain +10, or OFF, respectively

• The gain resolution in surface application is 0.1dB. All higher precision values
will be rounded to the closest value of the 0.1dB grid

8.3.3.6 Command button state properties

Description These properties are read-only. They always reflect the actual states of the
corresponding buttons at the instant of reading. Every state change is followed by an

Livewire System Control Protocol – v.13 page 56 of 83

Printed: February 26, 2010 IMCS UL Confidential

event notification, which may also includes other relevant data, for example, the fader
channel current On/Off state value.

Property name Objects: LwCH, FaCH
ON_But - Fader channel “ON” button
OFF_But - Fader channel “OFF” button
Objects: monit1 RQ 4736
sp_ext1_but - Monitor speaker source selector “ext1” button
sp_ext2_but - Monitor speaker source selector “ext2” button

Data type Named constant

Value range Enumerated: UP, DOWN

8.3.3.7 Source profile list
RQ 3692 RQ 3777

Description Objects: FaCH
aux_ret
monit1.ext1
monit1.ext2
monit2.ext1
prev.ext1

This is a filtered subset of all source profiles stored in the console configuration data
– the list of source profiles that are available to the corresponding console input. It is
attached to the object representing the corresponding console input and is read-only.
Each list entry consists of a source profile ID, source profile name, and the Livewire
channel number of the associated physical source.

Property name src_list

Data type Encapsulated data

Value range XML document with the following structure:
 <list>

<src>
<id>(profile id)</id>
<name>(profile name)</name>
<lwch>(livewire channel number)</lwch>

</src>
...

 <list>

Empty list:
 <list></list>

8.3.3.8 Source profile identifier
RQ 3692 RQ 3777

Description Objects: FaCH
aux_ret
monit1.ext1
monit1.ext2
monit2.ext1
prev.ext1

The src_id property is read-and-write. Writing to this property initiates an attempt
to load the corresponding source profile. Reading it returns the currently selected
source profile identifier. This item is included in source change event notifications.

Property name src_id

Data type Numeric

Livewire System Control Protocol – v.13 page 57 of 83

Printed: February 26, 2010 IMCS UL Confidential

Value range Positive integers identify profiles. Value –1 denotes none.

8.3.3.9 Source profile name
RQ 3692 RQ 3777

Description Objects: FaCH
aux_ret
monit1.ext1
monit1.ext2
monit2.ext1
prev.ext1

The src_name property is read-only. Reading it returns the name of the currently
selected source profile. This item is included in source change event notifications.

Property name src_name

Data type Literal

Value range Allowed printable characters, codes 32 to 126 (decimal). No other content or length
limitations are defined by this protocol. The actual format and content are determined
by source profile data.

8.3.3.10 Source profile loading status
RQ 3692 RQ 3777

Description Objects: FaCH
aux_ret
monit1.ext1
monit1.ext2
monit2.ext1
prev.ext1

The src_stat property is read-only. Reading it returns the loading status of the
currently selected source profile. This item is included in source change event
notifications.

Property name src_stat

Data type Numeric

Value range Enumerated. The source status encoding is preserved as used in Element application.
See appendix B in this document.

8.3.3.11 Source Livewire channel
RQ 3692 RQ 3777

Description Objects: FaCH
aux_ret
monit1.ext1
monit1.ext2
monit2.ext1
prev.ext1

The src_lwch property is read-only. Reading it returns the LW channel number of
the physical source associated with the currently selected source profile. This item is
included in source change event notifications.

Property name src_lwch

Data type Numeric

Value range Positive integers identify LW channels, within limits of the LW capacity. Value –1
denotes none.

Livewire System Control Protocol – v.13 page 58 of 83

Printed: February 26, 2010 IMCS UL Confidential

8.3.4 Commands and events

8.3.4.1 Legend
C Client Represents the external entity communicating with the resource
S Server Represents the resource as a subject of CRCP
R Resource Represents the internal algorithms of the resource

8.3.4.2 Subscribe to fader or aux return input channel control state changes
To receive asynchronous notifications about the fader channel control state changes, the remote application must
subscribe to the corresponding object. Depending on the selected addressing method, the subscription request must
be issued for:

a) LW channel (source ID)

C: SUB LwCH#1271 $ACK $TRXI=555
S: ACK $TRXI=555

b) physical fader number

C: SUB FaCH#3 $ACK $TRXI=555
S: ACK $TRXI=555

c) aux return RQ 4738

C: SUB aux_ret#1 $ACK $TRXI=555
S: ACK $TRXI=555

8.3.4.3 Set fader channel controls,
addressing by source LW channel number

The remote application will use SET commands to control the fader channel or aux return properties. Since this is
supposed to be operated over TCP unicast, reliable delivery is assumed, and no acknowledgement is being requested.

Example 1:
Set fader channel mix assignments and the On/Off state. Remote application has not requested event notifications for
control state changes:

C: SET LwCH#1271 Asg_PGM1=ON,Asg_PGM2=ON,Asg_PGM3=OFF,Asg_PGM4=OFF
S:
C: SET LwCH#1271 ON_State=ON
S:

Example 2:
Set fader channel input muting state. Remote application has requested event notifications for control state changes:

C: SET LwCH#1271 Mute_State=MUTED
S: EVENT LwCH#1271 Mute_State=MUTED

Example 3:
Set fader gain value. Fader gain values do not trigger event notifications:

C: SET LwCH#1271 Fader_Gain=-6.0
S:

Example 4:
Failed attempt to set undefined mix assignment state, transaction ID was not included:

C: SET LwCH#1271 Asg_PGM1=HIGH
S: ACK $STATUS=INVALID_VALUE

Livewire System Control Protocol – v.13 page 59 of 83

Printed: February 26, 2010 IMCS UL Confidential

8.3.4.4 Read fader channel controls,
addressing by source LW channel number

The remote application can read fader channel properties at any time using GET commands. Subscription is not
required to receive value indications in response to GET commands.

Example 1:
Read fader gain:

C: GET LwCH#1271 Fader_Gain
S: INDI LwCH#1271 Fader_Gain=-6.0

Example 2:
Read fader channel PGM1 assignment and the On/Of state:

C: GET LwCH#1271 Asg_PGM1,ON_State
S: INDI LwCH#1271 Asg_PGM1=ON,ON_State=ON

8.3.4.5 Notify remote application about fader channel control state changes,
addressing by source LW channel number

The resource may change fader channel control states locally. In such cases, the resource will notify the remote
application about the changes by means of EVENT messages. To receive notifications, it is required and sufficient
that the client were subscribed to the properties of the corresponding source (LW channel) object. Only the actually
changed properties will be included in the notification.

Example 1:
Operator presses the PGM1 assignment button on a fader channel. Remote application has requested event
notifications for control state changes:

User: Assign a fader to PGM1 using the control surf ace button
R: change the PGM1 assignment switch state
S: EVENT LwCH#1271 Asg_PGM1=ON

Example 2:
Set the fader channel input muting state remotely. The remote application has requested event notifications for
control state changes, therefore an event notification is sent in response:

C: SET LwCH#1271 Mute_State=MUTED
S: EVENT LwCH#1271 Mute_State=MUTED

Example 3:
Operator presses the ON button on a fader channel, which is currently OFF. Remote application has requested event
notifications for control state changes. The first event notification follows pressing the button, and it reports both the
button state change and the current fader channel state. The second notification follows the requested fader channel
state change. Finally the third notification follows releasing the button:

User: Press the ON button on the control surface
S: EVENT LwCH#1271 ON_But=Down,ON_State=Off
R: change the fader channel state from OFF to ON
S: EVENT LwCH#1271 ON_State=On
User: Release the ON button on the control surface
S: EVENT LwCH#1271 ON_But=Up,ON_State=On

8.3.4.6 Set, get, observe fader and aux return input channel controls,
addressing by physical input channel

The handling schemes do not differ from the previous examples, excepting that another addressing method is used:

C: SET FaCH#3 ON_State=ON
S: EVENT FaCH#3 ON_State=ON

Livewire System Control Protocol – v.13 page 60 of 83

Printed: February 26, 2010 IMCS UL Confidential

C: GET FaCH#3 Asg_PGM1,ON_State
S: INDI FaCH#3 Asg_PGM1=ON,ON_State=ON

RQ 4738
C: GET aux_ret#1 Asg_PGM1,ON_State
S: INDI aux_ret#1 Asg_PGM1=ON,ON_State=ON

C: SET aux_ret#2 Fader_Gain=-6.0
S: INDI aux_ret#2 Fader_Gain=-6.0

8.3.4.7 Fader source handling
RQ 3692
// Getting source profile list for an individual fader:
C: get FaCH#3 src_list
S: indi FaCH#3 src_list=%beginencap%
<list>
 <src>
 <id>1</id>
 <name>Goog_115</name>
 <lwch>115</lwch>
 </src>
 <src>
 <id>2</id>
 <name>Goog_116</name>
 <lwch>116</lwch>
 </src>
</list>
%endencap%

// Checking the actually loaded source profile. A source is loaded on fader 3, in full control mode:
C: get FaCH#3 src_id, src_name, src_lwch, src_stat
S: indi FaCH#3 src_id=1, src_name="Goog_115", src_l wch=115, src_stat=22

// Changing the source. Source loading/unloading is followed by an event notification, regardless of what triggered
the change. The new source profile is listen-only:
C: set FaCH#3 src_id=2
R: Load the requested source
S: event FaCH#3 src_id=2, src_name="Goog_116", src_ lwch=116, src_stat=21

// Changing the source. Source loading cannot be immediately completed for some reason. It temporarily enters a
waiting state, and completes after removing the blocking condition.
C: set FaCH#3 src_id=2
R: Attempt to load the requested source - cannot co mplete because fader is ON
S: event FaCH#3 src_id=2, src_name="Goog_116", src_ lwch=116, src_stat=4
R: Fader switched OFF
S: event FaCH#3 ON_State=OFF
R: Source loading completed
S: event FaCH#3 src_id=2, src_name="Goog_116", src_ lwch=116, src_stat=22

// Unloading the source:
C: set FaCH#3 src_id=-1
R: Unload the source
S: event FaCH#3 src_id=-1

// Source change notifications. The operations were initiated not in terms of this LWCP session – by the console
operator, or other LWCP session:
Operator/other LWCP: Request a source change on fad er#3
R: Load the requested source on fader#3
S: event FaCH#3 src_id=2, src_name="Goog_116", src_ lwch=116, src_stat=21

Operator/other LWCP: Request unloading the source f rom fader#4
R: Unload source from fader#4
S: event FaCH#4 src_id=-1

Livewire System Control Protocol – v.13 page 61 of 83

Printed: February 26, 2010 IMCS UL Confidential

8.3.4.8 Aux return and monitor input source handling
RQ 3777
The same general handling scheme is applied here that used with fader sources:

get src_list � set src_id � event src_id
Object names used for addressing are to be substituted accordingly.

Examples:
C: get aux_ret#1 src_list
S: indi aux_ret#1 src_list=%beginencap% ... %endenc ap%

C: get monit1.ext1 src_id, src_name, src_lwch, src_ stat
S: indi monit1.ext1 src_id=1, src_name="Goog_115", src_lwch=115, src_stat=22

C: set prev.ext1 src_id=2
S: event prev.ext1 src_id=2, src_name="Goog_116", s rc_lwch=116, src_stat=21

8.3.4.9 Notify remote application about monitor source selector button state changes
RQ 4736
S: event monit1 sp_ext1_but=DOWN
S: event monit1 sp_ext1_but=UP
S: event monit1 sp_ext2_but=DOWN
S: event monit1 sp_ext2_but=UP

8.4 Fader channel – accessory module operations

8.4.1 Application
This protocol module is intended to be used for fader channel accessory module operations.

v.09 UDP multicast port 4011 is used to deliver the button and rotary knob events from the accessory modules to the
host controller, and UDP multicast port 4012 is used to deliver commands from the host controller to the modules.

Application message delivery is assumed to be reliable by means of sending every UDP message twice. Using the
message identifier $MSGI may be required to recognize the duplicates.

8.4.2 Objects

8.4.2.1 Source ID – Livewire channel
This type of accessory module is always associated with a source, and not with any particular console and a fader
number on it. The addressing method that relies on the source ID, in combination with the multicast distribution,
ensure that the control automatically follows the source to any physical fader on any console.

A Livewire channel represents the source as an object using a certain isolated communications media. This Livewire
channel takes the role of the addressable object in the LWCP protocol messages and thus ensures communication
with the whole collection of items belonging to the source.

The class name for LW channel is:

LwCH

The entity identifier is a LW channel number, and thus a full Object ID for a LW channel is:

LwCH#<channel number>

Example:
LwCH#1271

Livewire System Control Protocol – v.13 page 62 of 83

Printed: February 26, 2010 IMCS UL Confidential

8.4.3 Properties

8.4.3.1 Overview
The present set of properties ensures the operations defined for the remote mic control and headphones selector
accessory modules.

The following properties reflect user actions. Their value changes are handled as events, originating in the user
interface and propagating to the application core:

ON_But - State of the “ON” button
OFF_But - State of the “OFF” button
TALK_But - State of the “TALKBACK” button
MUTE_But - State of the “MUTE” button
HP_Preset1_But - State of the headphones “PRESET1” button
HP_Preset2_But - State of the headphones “PRESET2” button
HP_Sel_But - State of the headphones rotary selector button

HP_Sel_Rot - Amount of rotation of the headphones rotary selector

The following properties serve for user interface indication devices control. Their values propagate from the
application core to the user interface.

ON_Lamp - State of the “ON” lamp
OFF_Lamp - State of the “OFF” lamp
TALK_Lamp - State of the “TALK” lamp
MUTE_Lamp - State of the “MUTE” lamp
HP_Preset1_Lamp - State of the headphones “PRESET1” lamp
HP_Preset2_Lamp - State of the headphones “PRESET2” lamp
HP_Disp_Text - Text for the headphones source name display

8.4.3.2 Command button state properties

Description Object: LwCH
These properties are read-only. They always reflect the actual states of the
corresponding buttons at the instant of reading. With respect to the state property,
there is no difference between the simple push-buttons and the click function of the
rotary selector.

Property name ON_But - State of the “ON” button
OFF_But - State of the “OFF” button
TALK_But - State of the “TALKBACK” button
MUTE_But - State of the “MUTE” button
HP_Preset1_But - State of the headphones “PRESET1” button
HP_Preset2_But - State of the headphones “PRESET2” button
HP_Sel_But - State of the headphones rotary selector button

Data type Named constant

Value range Enumerated: UP, DOWN

8.4.3.3 Command button lamp properties

Description Object: LwCH
These properties are write-only. They determine the states of the lamps beneath the
corresponding buttons.

Property name ON_Lamp - State of the “ON” lamp
OFF_Lamp - State of the “OFF” lamp
TALK_Lamp - State of the “TALK” lamp

Livewire System Control Protocol – v.13 page 63 of 83

Printed: February 26, 2010 IMCS UL Confidential

MUTE_Lamp - State of the “MUTE” lamp
HP_Preset1_Lamp - State of the headphones “PRESET1” lamp
HP_Preset2_Lamp - State of the headphones “PRESET2” lamp

Data type Named constant

Value range Enumerated:
ON – continuous ON state
OFF – continuous OFF state
TBD: Do we need cadences here?

8.4.3.4 Headphones selector rotation amount

Description Object: LwCH
This property is read-only. It always contains the rotation amount relative to the last
reading, expressed in rotation units (clicks). A positive value represents rotation
clockwise, a negative value – counterclockwise.

Property name HP_Sel_Rot

Data type Decimal integer

Value range Minimally required: +1, -1 represent rotation by one unit
Other values may be used to represent rotation by multiple units in a single reading.

8.4.3.5 Headphones source name display text

Description Object: LwCH
This property is write-only. It determines the text to be displayed on the indication
device. Fixed font and fixed number of character positions, arranged in a single line,
are assumed, and no layout control is supported. Capacity of the indication device
will determine the final display. If the number of characters in the command is less
than the display area, the remaining display positions shall be cleared. Characters not
fitting in the display area shall be ignored (text trimmed).

Property name HP_Disp_Text - Text for the headphones source name display

Data type Literal constant

Value range No content or length limitations in the protocol.
Examples for a single-row, 10-char display:

HP_Disp_Text=”Stud Guest” - Full display
HP_Disp_Text=”Studio Guest” - Display “Studio Gue”, the excess

 characters were trimmed
HP_Disp_Text=”Host Mic” - Partly filled display, the previous

 content was cleared
HP_Disp_Text=”” - Clears all display area

8.4.4 Commands and events

8.4.4.1 Legend
C Client Represents the external entity communicating with the console application
S Server Represents the console application as a subject of CRCP
Console Represents the internal algorithms of the console application

Livewire System Control Protocol – v.13 page 64 of 83

Printed: February 26, 2010 IMCS UL Confidential

8.4.4.2 User command from accessory module
Pressing or releasing any of buttons on a module, or rotating the selector will generate an event report to the
application core. To avoid needlessly complicating the state logic in the communicating entities, explicit ACK to the
EVENT command is not being requested. It seems redundant here, since immediate visual feedback (lamp) will be
provided to the user.

Example 1: User presses the “ON” button on the module:
C: EVENT LwCH#1001 ON_But=Down
Console: (reaction to the event)

Example 2: User releases the “ON” button on the module:
C: EVENT LwCH#1001 ON_But=Up
Console: (reaction to the event)

Example 3: User rotates the selector by two clicks counterclockwise:
C: EVENT LwCH#1001 HP_Sel_Rot=-2
Console: (reaction to the event)

8.4.4.3 Indication to accessory module
Application core will use SET commands to control displays on the module. To avoid needlessly complicating the
state logic in the communicating entities, explicit ACK to the SET command is not being requested. It seems
redundant here, since writing the content to an indication device is a trivial operation with no dependencies on other
factors. It may fail only in presence of hardware or software defects.

Example 1: Turning on the “TALK” lamp on the module:
Console: (processing an operation)
S: SET LwCH#1001 TALK_Lamp=ON
C:

Example 2: Displaying a source name on the module:
Console: (processing an operation)
S: SET LwCH#1001 HP_Disp_Text=”Stud Guest”
C:

8.4.5 Message sequence examples
These operations employ UDP multicast. Delivery cannot be guaranteed for every single message, but it is assumed
being sufficiently reliable if a pair of duplicates is sent instead of a single message. The duplicates are marked by
means of identical $MSGI values. The second message of each pair is ignored, and the reaction to the pair is as if a
single message was received.

 Accessory module turns the channel on
C: EVENT LwCH#1001 ON_But=Down $MSGI=222
C: EVENT LwCH#1001 ON_But=Down $MSGI=222
Console: Turn the channel ON
S: SET LwCH#1001 OFF_Lamp=OFF $MSGI=444
S: SET LwCH#1001 OFF_Lamp=OFF $MSGI=444
Module: Turn off the lamp
S: SET LwCH#1001 ON_Lamp=ON $MSGI=445
S: SET LwCH#1001 ON_Lamp=ON $MSGI=445
Module: Turn on the lamp
C: EVENT LwCH#1001 ON_But=Up $MSGI=223
C: EVENT LwCH#1001 ON_But=Up $MSGI=223
Console: (no reaction)

 Accessory module selects a preset source
C: EVENT LwCH#1001 HP_Preset2_But=Down $MSGI=224
C: EVENT LwCH#1001 HP_Preset2_But=Down $MSGI=224
Console: Start counting time for preset change dela y
C: EVENT LwCH#1001 HP_Preset2_But=Up $MSGI=225
C: EVENT LwCH#1001 HP_Preset2_But=Up $MSGI=225

Livewire System Control Protocol – v.13 page 65 of 83

Printed: February 26, 2010 IMCS UL Confidential

Console: Change selection to preset #2
S: SET LwCH#1001 HP_Disp_Text=”Stud Guest” $MSGI=44 6
S: SET LwCH#1001 HP_Disp_Text=”Stud Guest” $MSGI=44 6
Module: Clear the previous content and display the just received text
S: SET LwCH#1001 HP_Preset1_Lamp=OFF $MSGI=447
S: SET LwCH#1001 HP_Preset1_Lamp=OFF $MSGI=447
Module: Turn off the lamp
S: SET LwCH#1001 HP_Preset2_Lamp=ON $MSGI=448
S: SET LwCH#1001 HP_Preset2_Lamp=ON $MSGI=448
Module: Turn on the lamp

 Accessory module selects a source from the common list
C: EVENT LwCH#1001 HP_Sel_Rot=1 $MSGI=226
C: EVENT LwCH#1001 HP_Sel_Rot=1 $MSGI=226
Console: Go to the next list item, read the source name
S: SET LwCH#1001 HP_Disp_Text=”Codec-1” $MSGI=449
S: SET LwCH#1001 HP_Disp_Text=”Codec-1” $MSGI=449
Module: Clear the previous content and display the just received text
C: EVENT LwCH#1001 HP_Sel_Rot=1 $MSGI=227
C: EVENT LwCH#1001 HP_Sel_Rot=1 $MSGI=227
Console: Go to the next list item, read the source name
S: SET LwCH#1001 HP_Disp_Text=”Codec-2” $MSGI=450
S: SET LwCH#1001 HP_Disp_Text=”Codec-2” $MSGI=450
Module: Clear the previous content and display the just received text
C: EVENT LwCH#1001 HP_Sel_But=Down $MSGI=228
C: EVENT LwCH#1001 HP_Sel_But=Down $MSGI=228
Console: Change selection to ”Codec-2”, switch audi o
C: EVENT LwCH#1001 HP_Sel_But=Up $MSGI=229
C: EVENT LwCH#1001 HP_Sel_But=Up $MSGI=229
Console: (no reaction)

8.5 V-Mixer

8.5.1 Objects
While the V-mixer resource is physically implemented in engine, and is intended to be controlled directly, an
alternative indirect control path via Element is supported too. In terms of this protocol, all V-Mixer object and
property definitions are identical in the both cases.

A single root object represents the V-Mixer resource. It is a structured item, and has three structure levels:

- The V-mixer as a whole
- Submix groups
- Individual inputs to submix groups

V-Mixer object

The class name for V-Mixer object is: VMIX

As long as there is just one V-Mixer entity per controlled device, no entity identifier is needed.

Submix group object

The class name for a submix group is: SUB

The entity identifier is an index number, and a full Object ID for a submix group is:
SUB#<number>

Individual input object

The class name for an individual input is: IN

The entity identifier is an index number, and a full Object ID for an input to a submix group is:
IN#<number>

Examples of the structured Object ID:

V-Mixer as a whole: VMIX

Submix group: VMIX.SUB#1

Livewire System Control Protocol – v.13 page 66 of 83

Printed: February 26, 2010 IMCS UL Confidential

Input: VMIX.SUB#1.IN#5

8.5.2 Properties

8.5.2.1 Overview
This set of properties covers the presently defined interactive operations offered on the Element V-Mixer control
web page and Engine V-Mixer control web page, excepting the external input stream connections (address, name),
which are controlled via LWRP.

Submix group properties

Master_Gain - Master gain of a submix group

Individual input properties

input_uri - The uniform resource identifier of the input source RQ 4519
Gain - Gain of the fader on this input
State - ON/OFF state of the ramping switch
TimeUp - Ramp up time
TimeDown - Ramp down time

8.5.2.2 Submix group master gain

Description Object: VMIX.SUB#<n>
This property is read-and-write. It allows reading the current and setting the desired
master gain of a submix group

Property name Master_Gain

Data type Decimal fixed point

Value range • Represents the gain value in dB
• The protocol allows arbitrary values, limited only by the data type
• The surface application will trim the values received with SET commands to the

following meaningful range:
–80 .. +10dB, OFF

• All values outside this numeric range will be interpreted by the application either
as the maximal gain +10, or OFF, respectively

• The gain resolution in surface application is 0.1dB. All higher precision values
will be rounded to the closest value of the 0.1dB grid

8.5.2.3 Input source
RQ 4519

Description Object: VMIX.SUB#<n>.IN#<k>
This property is read-and-write. It can be used to specify the input source to be
connected, or to read the actually connected source.

Property name input_uri

Data type Literal

Value range 1) Generic URI syntax.
2) A shortened form of the generic URI is allowed, skipping the URI scheme name
and starting with the IP address. Since the scheme name cannot begin with a number,
the shortened form can be unambiguously recognized.

24 Feb 2009: Supporting the shortened form is presently the only mandatory
requirement.

Livewire System Control Protocol – v.13 page 67 of 83

Printed: February 26, 2010 IMCS UL Confidential

8.5.2.4 Input gain

Description Object: VMIX.SUB#<n>.IN#<k>
This property is read-and-write. It allows reading the current and setting the desired
gain on an individual input to a submix group

Property name Gain

Data type Decimal fixed point

Value range • Represents the gain value in dB
• The protocol allows arbitrary values, limited only by the data type
• The surface application will trim the values received with SET commands to the

following meaningful range:
–80 .. +10dB, OFF

• All values outside this numeric range will be interpreted by the application either
as the maximal gain +10, or OFF, respectively

• The gain resolution in surface application is 0.1dB. All higher precision values
will be rounded to the closest value of the 0.1dB grid

8.5.2.5 Input ramp switch state

Description Object: VMIX.SUB#<n>.IN#<k>
This property is read-and-write. It allows reading the current and setting the desired
state of the ramp switch on an individual input to a submix group.
Changing this switch state does not change the gain to the opposite state instantly. It
only triggers a timed transition between the ON and OFF states

Property name State

Data type Named constant

Value range Enumerated: ON,OFF

8.5.2.6 Input ramp up/down time

Description Object: VMIX.SUB#<n>.IN#<k>
These properties are read-and-write. They allows reading the current and setting the
desired duration of the timed transitions between the ON and OFF states of the ramp
switch.

Property name TimeUp
TimeDown

Data type Decimal fixed point

Value range • Represents the time value in seconds
• The protocol allows arbitrary values, limited only by the data type
• The surface application will trim the values received with SET commands to the

following meaningful range:
0 .. 60

• All values outside this numeric range will be interpreted by the application either
as the minimal time 0 sec, or maximal time 60 sec, respectively

• The time resolution in surface application is 0.1 sec. All higher precision values
will be rounded to the closest value of the 0.1 sec grid

Livewire System Control Protocol – v.13 page 68 of 83

Printed: February 26, 2010 IMCS UL Confidential

8.5.3 Commands and events

8.5.3.1 Legend
C Client Represents the external entity communicating with the resource
S Server Represents the resource as a subject of CRCP
R Resource Represents the internal algorithms of the resource

8.5.3.2 Subscribe to V-Mixer control parameter changes
To receive asynchronous notifications about V-Mixer parameter value changes, the remote application must
subscribe to the VMIX object.

C: SUB VMIX $ACK $TRXI=555
S: ACK $TRXI=555

8.5.3.3 Input source connection
RQ 4519
Use the SET command to connect or disconnect the input source. The shortened notation is used, where the URI
scheme name is skipped. Since this is supposed to be operated over TCP unicast, reliable delivery is assumed, and no
acknowledgement is requested:
C: SET VMIX.SUB#1.IN#5 input_uri=”239.192.0.115:400 5”
S:

Use the GET command to learn the actually connected source.
C: GET VMIX.SUB#1.IN#5 input_uri
S: INDI VMIX.SUB#1.IN#5 input_uri=”239.192.0.115:40 05”

Empty URI value would disconnect the input:
C: SET VMIX.SUB#1.IN#5 input_uri=””
S:

8.5.3.4 Set V-Mixer control parameter by remote application
The remote application will use SET commands to control V-Mixer parameter values in the console or engine. Since
this is supposed to be operated over TCP unicast, reliable delivery is assumed, and no acknowledgement is
requested.

Set a group master gain, success:
C: SET VMIX.SUB#1 Master_Gain=<new gain value>
S:

Set an input ramp switch state, success:
C: SET VMIX.SUB#1.IN#5 State=ON
S:

Set an input ramp switch state, failure, transaction ID was not included:
C: SET VMIX.SUB#1.IN#5 State=ON
S: ACK $STATUS=ERROR

Set an input ramp switch state, failure, transaction ID was included:
C: SET VMIX.SUB#1.IN#5 State=ON $TRXI=555
S: ACK $TRXI=555 $STATUS=ERROR

Note: General decision to use transaction ID and error codes, as well as their detail level and concrete values is
up to implementation convention.

8.5.3.5 Read V-Mixer control parameter by remote application
The remote application can read V-Mixer parameter values at any time using GET commands. Subscription is not
required to receive value indications in response to GET commands.

Livewire System Control Protocol – v.13 page 69 of 83

Printed: February 26, 2010 IMCS UL Confidential

Read an input ramp switch state:
C: GET VMIX.SUB#1.IN#5 State
S: INDI VMIX.SUB#1.IN#5 State=ON

8.5.3.6 Notify remote application about V-Mixer control parameter change
The resource may change V-Mixer parameters locally. In such cases, the resource will notify the remote application
about the changes by means of EVENT messages. To receive notifications, it is required and sufficient that the client
were subscribed to the properties of the V-Mixer object. Only the actually changed properties will be included in the
notification.

User: request changing a V-Mixer input state via th e resource local interface
R: change the input state
S: EVENT VMIX.SUB#1.IN#5 State=<new state>
C: (update the display)

8.6 V-Mode

8.6.1 Objects
The V-Mode resource is represented by a number of identical V-Mode objects. Each of them is a non-structured,
single-level item.

V-Mode object

The class name for V-Mode object is: VMODE

The entity identifier is an index number, and a full Object ID for a V-Mode object is:
VMODE#<number>

Example: VMODE#3

8.6.2 Properties

8.6.2.1 Overview
This set of properties covers the presently implemented source selection and signal profiling capabilities of the V-
Mode resource, excepting the external input stream connections (address, name), which are controlled via LWRP.

V-Mode properties

input_uri - The uniform resource identifier of the input source RQ 4519
In_Select - State of the input source selector
Audio_Mode - Audio transfer mode

8.6.2.2 Input source
RQ 4519

Description Object: VMODE#<n>
This property is read-and-write. It can be used to specify the input source to be
connected, or to read the actually connected source.

Property name input_uri

Data type Literal

Value range 1) Generic URI syntax.
2) A shortened form of the generic URI is allowed, skipping the URI scheme name
and starting with the IP address. Since the scheme name cannot begin with a number,
the shortened form can be unambiguously recognized.

Livewire System Control Protocol – v.13 page 70 of 83

Printed: February 26, 2010 IMCS UL Confidential

24 Feb 2009: Supporting the shortened form is presently the only mandatory
requirement.

8.6.2.3 Input source selector state

Description Object: VMODE#<n>
This property is read-and-write. It allows reading the current and setting the desired
state of the input source selector switch.
Changing this switch state does not connect/disconnect the external input audio
stream. It only points the V-Mode input to a certain internal signal tap.

Property name In_Select

Data type Named constant

Value range RQ 3419
Enumerated: PGM1, PGM1PROC, PGM2, PGM3, PGM4, RECORD, PHONE,
 AUXA, AUXB, AUXC, AUXD,
 VMIX_MAIN,
 VMIX_SUB01, VMIX_SUB02, VMIX_SUB03, VMIX_SUB04,
 VMIX_SUB05, VMIX_SUB06, VMIX_SUB07, VMIX_SUB08,
 EXT

8.6.2.4 Audio transfer mode

Description Object: VMODE#<n>
This property is read-and-write. It allows reading the current and setting the desired
audio transfer mode.

Property name Audio_Mode

Data type Named constant

Value range Enumerated: PASS_LR, PASS_8CH,
 UPMIX_L, UPMIX_R, UPMIX_sumLR3, UPMIX_LRto51,
 DOWNMIX_51toLR,
 SPLIT_sumLR3toL, SPLIT_sumLR3toR,
 SPLIT_sumLR6toL, SPLIT_sumLR6toR,
 COMB_LL, COMB_LR, COMB_RL, COMB_RR,
 COMB_LR51, COMB_51LR

8.6.3 Commands and events

8.6.3.1 Legend
C Client Represents the external entity communicating with the resource
S Server Represents the resource as a subject of CRCP
R Resource Represents the internal algorithms of the resource

8.6.3.2 Subscribe to V-Mode control parameter changes
To receive asynchronous notifications about V-Mode parameter value changes, the remote application must
subscribe to the VMODE objects.

The most basic implementation is only required to support a common subscription to all VMODE entities together.
In this case the subscription request would not specify any concrete entity number:

C: SUB VMODE $ACK $TRXI=555
S: ACK $TRXI=555

Livewire System Control Protocol – v.13 page 71 of 83

Printed: February 26, 2010 IMCS UL Confidential

8.6.3.3 Input source connection
RQ 4519
Use the SET command to connect or disconnect the input source. The shortened notation is used, where the URI
scheme name is skipped. Since this is supposed to be operated over TCP unicast, reliable delivery is assumed, and no
acknowledgement is requested:
C: SET VMODE#1 input_uri=”239.192.0.115:4005”
S:

Use the GET command to learn the actually connected source.
C: GET VMODE#1 input_uri
S: INDI VMODE#1 input_uri=”239.192.0.115:4005”

Empty URI value would disconnect the input:
C: SET VMODE#1 input_uri=””
S:

8.6.3.4 Set V-Mode control parameter by remote application
The remote application will use SET commands to control V-Mode parameter values. Since this is supposed to be
operated over TCP unicast, reliable delivery is assumed, and no acknowledgement is requested.

Set input source selector, success:
C: SET VMODE#1 In_Select=PGM1
S:

Set audio transfer mode, success:
C: SET VMODE#1 Audio_Mode=PASS_LR
S:

Failed attempt to set undefined audio transfer mode, transaction ID was not included:
C: SET VMODE#1 Audio_Mode=PASS_ABC
S: ACK $STATUS=ERROR

Failed attempt to set undefined audio transfer mode, transaction ID was included:
C: SET VMODE#1 Audio_Mode=PASS_ABC $TRXI=555
S: ACK $TRXI=555 $STATUS=ERROR

Note: General decision to use transaction ID and error codes, as well as their detail level and concrete values is

up to implementation convention.

8.6.3.5 Read V-Mode control parameter by remote application
The remote application can read V-Mode parameter values at any time using GET commands. Subscription is not
required to receive value indications in response to GET commands.

Read input source selector state:
C: GET VMODE#1 In_Select
S: INDI VMODE#1 In_Select=PGM1

8.6.3.6 Notify remote application about V-Mode control parameter change
The resource may change V-Mode parameters locally. In such cases, the resource will notify the remote application
about the changes by means of EVENT messages. To receive notifications, it is required and sufficient that the client
were subscribed to the properties of the V-Mode object. Only the actually changed properties will be included in the
notification.

User: request changing a V-Mode input selector stat e via the resource local interface
R: change the input selector state
S: EVENT VMODE#1 In_Select=PGM1
C: (update the display)

Livewire System Control Protocol – v.13 page 72 of 83

Printed: February 26, 2010 IMCS UL Confidential

8.7 Special provision for operations over UDP multi cast

The channel-oriented operations substantially rely on the broadcast (multicast) type of distribution, which does not
require the sender to be aware of presence and identity of concrete target objects.

Neither TCP point-to-point, nor UDP multicast transport immediately ensure reliable point-to-multipoint delivery.
According to the original concept, a special interim connection management layer would have to deal with that, but it
does not exist at the moment of designing this part of the protocol (07 Apr 2006). Therefore the minimally required
mechanisms are being implemented directly at the application protocol layer.

The approach taken here is based on the assumption that the operations will be carried out in a congestion and error
free LAN environment:

• UDP multicast will be used as the delivery method
• To ensure reliable delivery, every UDP message will be sent twice. In absence of hardware defects, the

probability to lose two messages at a time on a LAN is small sufficiently, to be ignored.
• Mandatory message identifiers will be included to recognize the duplicates – the same ID will be used for

the both copies of a message. If the original message was successfully received, its copy will be simply
ignored.

Livewire System Control Protocol – v.13 page 73 of 83

Printed: February 26, 2010 IMCS UL Confidential

9. Resource Discovery Protocol

9.1 Application

The Resource Discovery Protocol (RDP) is intended to provide external entities with data about the resources
available in the unit. It has read-only access to the stored configuration data.

RDP supports basic access control using a simple login procedure.

Note: Presently this protocol is only specified to provide responses to a few specific data requests. It may be

extended in future with more data items and also to include resource advertising logic.

9.2 Resource data objects

1. Presently a single entity in a single object class is defined – configuration data. At the root level it represents
taken together all the configuration data components existing in the unit.

2. The class name for the configuration data object is:

ConfigData

3. As long as there is just one such entity per unit, no entity identifier is needed.

4. If needed, individual components of the configuration data object would be addressable as nested objects, lower

by one structure level. For example:
ConfigData - Represents all configuration data components

ConfigData.Source#227 - An individual source profile referenced by ID

ConfigData.Show#5 - An individual show profile referenced by ID

9.3 Properties

9.3.1 ShowProfList: Show profile list

Description The ShowProfList property is supported by console application. It is attached at
the top level of ConfigData object, and is read-only. Reading it returns the list of
all show profiles from the stored data table. Each list entry consists of a show profile
ID and name.

Property name ShowProfList

Data type Encapsulated data

Value range

XML document with the following structure:
 <list> RQ 4740

<showprofile>
<id>(profile id)</id>
<name>(profile name)</name>

</showprofile>
...

 </list>

Empty list:
 <list></list>

9.3.2 src_list: Source profile list
RQ 3692

Description This is the complete unfiltered list of all source profiles stored in the console

Livewire System Control Protocol – v.13 page 74 of 83

Printed: February 26, 2010 IMCS UL Confidential

configuration data. It is attached at the top level of ConfigData object, and is read-
only. Each list entry consists of a source profile ID, source profile name, and the
Livewire channel number of the associated physical source..

Property name src_list

Data type Encapsulated data

Value range

XML document with the following structure:
 <list>

<src>
<id>(profile id)</id>
<name>(profile name)</name>
<lwch>(livewire channel number)</lwch>

</src>
...

 <lList>

Empty list:
 <list></list>

9.3.3 GpioList: GPIO resource list

Description The GpioList property is supported by GPIO application. It is attached at the top
level of ConfigData object, and is read-only. Reading it returns the list of all GPIO
circuits from the stored data table. Each list entry consists of a circuit ID and function
description.

Property name GpioList

Data type Encapsulated data

Value range

Document with the following structure:
 <list> RQ 4740

<input>
<lwch>(lw channel number)</lwch>
<circuit>(circuit number)</circuit>
<function>(textual description)</function>

</input>
...
<output>

<lwch>(lw channel number)</lwch>
<circuit>(circuit number)</circuit>
<function>(textual description)</function>

</output>
...

 </list>

Empty list:
 <list></list>

9.3.4 console_hardware: Console hardware description
RQ 4610

Description The console_hardware property is attached at the top level of ConfigData

object, and is read-only. It displays a detailed description of the actually installed
console hardware in a structured form, arranged on the module/resource basis.

Property name console_hardware

Data type Encapsulated data

Value range Note, 18 Sep 2009: Presently, due to implementation limitations, only the fader
channel numbers are included, and they are shown all belonging to one module with

Livewire System Control Protocol – v.13 page 75 of 83

Printed: February 26, 2010 IMCS UL Confidential

unknown module ID. The data content is to be extended in future, to provide all the
needed details about the console hardware.

The console hardware description is a document with the following structure:
<slot>
 <id>-1</id>
 <resource>
 <type>fader</type>
 <id>(Fader number)</id>
 </resource>
 ...
</slot>
...
<slot>
 ...
</slot>

• There will be a <slot> group per each installed module
• The <id> value matches the actual hardware ID of the module. The value –1

denotes an unknown module ID.
• There will be a <resource> group per each resource existing on the

module. Examples of resources: fader, LCD legend push button, phone
system controller panel.

9.4 Resource discovery commands

9.4.1 Obtain a list of show profiles from console configuration data
C: GET ConfigData ShowProfList
S: INDI ConfigData ShowProfList=%BeginEncap%(list d ata goes here)%EndEncap%

Returning empty list:
S: INDI ConfigData ShowProfList=%BeginEncap%<list>< /list>%EndEncap% RQ 4740

9.4.2 Obtain a list of source profiles from console configuration data
RQ 3692
C: GET ConfigData src_list
S: INDI ConfigData src_list=%BeginEncap%
<list>
 <src>
 <id>1</id>
 <name>Goog_115</name>
 <lwch>115</lwch>
 </src>
 <src>
 <id>2</id>
 <name>Goog_116</name>
 <lwch>116</lwch>
 </src>
</list>
%EndEncap%

Returning empty list:
S: INDI ConfigData src_list=%BeginEncap%<List></Lis t>%EndEncap%

9.4.3 Obtain a list of GPIO resources from GPIO unit configuration data
C: GET ConfigData GpioList
S: INDI ConfigData GpioList=%BeginEncap%(list data goes here)%EndEncap%

Returning empty list:

Livewire System Control Protocol – v.13 page 76 of 83

Printed: February 26, 2010 IMCS UL Confidential

S: INDI ConfigData GpioList=%BeginEncap%<list></lis t>%EndEncap% RQ 4740

9.4.4 Obtain console hardware description from configuration data
RQ 4610
C: GET ConfigData console_hardware
S: INDI ConfigData console_hardware=%BeginEncap%
<slot>
 <id>-1</id>
 <resource>
 <type>fader</type>
 <id>1</id>
 </resource>
 ...
 <resource>
 <type>fader</type>
 <id>14</id>
 </resource>
</slot>
%EndEncap%

Returning empty description:
S: INDI ConfigData console_hardware=%BeginEncap%<sl ot></slot>%EndEncap%

9.5 Message sequence examples

 Client logs in to the console config data storage. Only basic login is presently defined, no access levels.
C: LOGIN ConfigData USER=MIKE,PWD=AXIA $ACK $TRXI=5 55
S: ACK $TRXI=555 $STATUS=OK

 Client obtains the show profile list …
C: GET ConfigData ShowProfList
S: INDI ConfigData ShowProfList=%BeginEncap%

<list> RQ 4740
<showprofile>

<id>1</id>
<name>Default</name>

</showprofile>
<showprofile>

<id>2</id>
<name>Mike’s Morning</name>

</showprofile>
<showprofile>

<id>3</id>
<name>Night Music</name>

</showprofile>
</list>
%EndEncap%

 … and triggers changing the active profile on console using the console remote control protocol
C: SET AppControl ShowProfID=3
Console: start loading the new profile
S: EVENT AppControl ShowProfID=3,ShowProfName=”Nigh t Music”,ShowProfStat=LOADING
Console: loading the new profile completed
S: EVENT AppControl ShowProfID=3,ShowProfName=”Nigh t Music”,ShowProfStat=READY

 Client obtains the GPIO resource list from a GPIO unit …
C: GET ConfigData GpioList
S: INDI ConfigData GpioList=%BeginEncap%

<list> RQ 4740
<input>

<lwch>1002</lwch>
<circuit>1</circuit>
<function>ST monitor: MUTE command</function>

</input>
<input>

Livewire System Control Protocol – v.13 page 77 of 83

Printed: February 26, 2010 IMCS UL Confidential

<lwch>1002</lwch>
<circuit>2</circuit>
<function>ST monitor: DIM command</function>

</input>
<input>

<lwch>1002</lwch>
<circuit>3</circuit>
<function>ST monitor: Timer trigger command</functi on>

</input>
<output>

<lwch>1002</lwch>
<circuit>1</circuit>
<function>ST monitor: ON AIR lamp</function>

</output>
<output>

<lwch>1002</lwch>
<circuit>2</circuit>
<function>ST monitor: DIM lamp</function>

</output>
<output>

<lwch>1002</lwch>
<circuit>3</circuit>
<function>ST monitor: Timer trigger output</functio n>

</output>
<output>

<lwch>1002</lwch>
<circuit>5</circuit>
<function>ST monitor: TALK ACTIVE lamp</function>

</output>
</list>
%EndEncap%

 … and turns on the TALK ACTIVE lamp
C: SET CH#1002.GPO#5 PULSE=HIGH

Livewire System Control Protocol – v.13 page 78 of 83

Printed: February 26, 2010 IMCS UL Confidential

10. Unit Supervision
RQ 3994

10.1 Application

This protocol module is intended to be used for general control and monitoring. It deals with the following
information:

- Operation states
- Device parameters
- Application type, software version, and capability set

In order to access the unit supervision services, a unicast TCP connection should be opened to port 4010 (decimal).

10.2 Objects

10.2.1 Supervision entity
At the root level the supervision entity represents all components belonging to the unit supervision context. No entity
identifier is needed at this level.

The class name for the supervision entity is:

supv

Subsystems or modules, if such exist, may be represented by nested objects, at the next lower structure level. If more
than one instance of a class is possible, an entity identifier should be used. Modules of an Element console could
serve as a general example (not for exact and immediate implementation yet):

supv.mod#1

10.3 Properties

10.3.1 Overview
The present set of properties covers the immediately requested unit supervision capabilities, but it is not closed.
More properties may be added at any time to include support for other functions.

The following universal properties are defined, to be supported by all Livewire devices:

device_type - Principal function of the unit (is it a console, a mix engine, a node, etc)
version - Software system version ID
state - Supervision state

In addition to the universal properties, each device type may have other ones, associated with its specific function.
Presently the following device-specific properties are defined:

Mix engine:

console_ip - IP of the current controlling console
console_type - Console type (SmartSurface, Element, etc)
audio_mix_mode - Audio mixing mode (Stereo or 8-channel)

10.3.2 Device type

Description Objects: supv

Devices supporting this property: all types
This property reports the principal function of the unit. It is read-only.

Livewire System Control Protocol – v.13 page 79 of 83

Printed: February 26, 2010 IMCS UL Confidential

Equivalent data items on other interfaces:
• LWRP on port 93: DEVN parameter in the VER message

Property name device_type

Data type Named constant

Value range Enumerated: ELEMENT, ENGINE, OMNIA8X, ZIPORT, LIVEIO, GPIO
Notes:

ZIPORT – Zephyr iPort
LIVEIO – used for all types of Axia audio nodes

10.3.3 Software version ID

Description Objects: supv
Devices supporting this property: all types
This property reports the software system version ID. It is read-only.

Equivalent data items on other interfaces:

• LWRP, port 93: SYSV parameter in the VER message
• CMsg console-engine supervision, port 4002: SUPV.VERS

Property name version

Data type Literal constant

Value range In order to ensure uniform machine readable formatting throughout all the Axia
system, the version ID must be in one of the following formats, as defined in “Axia
Management Console (AMC) Support Definition Document version 1.0 revision 12”

<number1>.<number2>.<number3>.<number4>….<numberN>
<number1>.<number2>.<number3>.<number4>….<numberN>< letter>

Examples:
version=“2.4.8.12”
version=“1.0.2r”

10.3.4 Supervision state

Description Objects: supv
Devices supporting this property: all types
This property reports the actual operation state. It is read-only.

Note: A state transition in the general case may be a complex operation, which can
last in time and may fail in the end. Therefore using this property to initiate state
changes may lead to difficult handling and unclean design. For this purpose a
dedicated target state command property may be introduced, when needed.

Equivalent data items on other interfaces:

• CMsg console-engine supervision, port 4002: SUPV.STAT

Property name state

Data type Named constant

Value range Enumerated: STARTUP, READY, WORKING, SHUTDOWN, ERROR

10.3.5 Controlling console IP address

Description Objects: supv

Livewire System Control Protocol – v.13 page 80 of 83

Printed: February 26, 2010 IMCS UL Confidential

Devices supporting this property: mix engine
This property reports the IP address of the console currently controlling this mix
engine. It is read-only.

Equivalent data items on other interfaces:

• CMsg console-engine supervision, port 4002: SUPV.SSIP

Property name console_ip

Data type Literal constant

Value range Text formatted using the common IP address notation – four 8-bit numbers in decimal
form, separated with dots:
console_ip=”192.168.12.148”

10.3.6 Console type

Description Objects: supv
Devices supporting this property: mix engine
This property reports the console type currently controlling this mix engine. It is read-
only.

Equivalent data items on other interfaces:

• CMsg console-engine supervision, port 4002: SUPV.APPT

Property name console_type

Data type Named constant

Value range Enumerated: SMARTSURFACE, ELEMENT

10.3.7 Audio mixing mode

Description Objects: supv
Devices supporting this property: mix engine
This property reports the audio mixing mode selected by the console currently
controlling this mix engine. It is read-only.

Equivalent data items on other interfaces:

• CMsg console-engine supervision, port 4002: SUPV.AMXM

Property name audio_mix_mode

Data type Named constant

Value range Enumerated: STEREO, SURR51LR

10.4 Message sequences

10.4.1 Overview
04 Jul 2008:
At the moment of writing this, the required minimum is to allow external clients to obtain the unit status information.
This will be done by querying the “state” property. For all device types, it is mandatory to respond with the three
universal properties – device type, version, and state.

It is expected that the great majority of all status polling transactions will only use the state value. Therefore, to
optimize the operation, the “state” property must always go first in the response message.

Livewire System Control Protocol – v.13 page 81 of 83

Printed: February 26, 2010 IMCS UL Confidential

In addition to this, devices are allowed, but not universally required, to include in the status responses also their type-
specific properties. The type-specific properties, if included, must always follow after the mandatory universal
properties. The concrete property set to be included in each particular case is left to be determined by an
implementation convention.

Besides querying the unit status, the protocol design allows individually reading each of the other properties.
Supporting this is not a mandatory requirement at the moment.

Another possibly useful future extension could be querying consolidated unit data. Since different devices are going
to have rather different data sets, using the form of an XML document seems reasonable for this purpose.

10.4.2 Unit status polling – the minimal response
04 Jul 2008: This is the only mandatory requirement now.

In response to querying its status, the device is reporting only the three universal properties:

C: GET supv state
S: INDI supv state=WORKING, device_type=GPIO, versi on=”2.5.2g”

10.4.3 Unit status polling – extended response
04 Jul 2008: This may be implemented according to a local convention, but is not universally required

In response to querying its status, the mix engine is including its type-specific data:

C: GET supv state
S: INDI supv state=WORKING, device_type=ENGINE, ver sion=”2.4.9a”,
 console_ip=”192.168.12.148”, console_t ype=ELEMENT, audio_mix_mode=STEREO

10.4.4 Reading an individual property
04 Jul 2008: This may be implemented according to a local convention, but is not universally required

C: GET supv version
S: INDI supv version=”2.5.2g”

10.4.5 Reading bulk data
04 Jul 2008: Not to be implemented now.
This is an illustrative example of a possible future extension mechanism, not a final specification yet.

C: GET supv unit_data
S: INDI supv unit_data=%BeginEncap%

<data> RQ 4740
<state>WORKING</state>
<device_type>ENGINE</device_type>
<version>2.4.9a</version>
<console_ip>192.168.12.148</console_ip>
<console_type>ELEMENT</console_type>
<audio_mix_mode>STEREO</audio_mix_mode>

</data>
%EndEncap%

Livewire System Control Protocol – v.13 page 82 of 83

Printed: February 26, 2010 IMCS UL Confidential

Appendix A. Global status codes
Numeric

value
Name Description

0 OK OK
Range 1..99: Objects and properties – ID and value related

1 UNKNOWN_PROPERTY Unknown property
2 INVALID_VALUE Invalid value
7 UNKNOWN_OBJECT Unknown object

Range 100..199: Session management related
100 AUTHORIZATION_FAILURE Authorization failure

Livewire System Control Protocol – v.13 page 83 of 83

Printed: February 26, 2010 IMCS UL Confidential

Appendix B. Source status codes used in Element
Note, 18 Sep 2009: The list below was extracted from Element documentation on the indicated date. It

is included in this document for quick reference, although it may temporarily go out
of sync with the primary document, as the Element application develops further.

Status
code

Description Notes

0 Status is not assigned, it is unknown
1 Channel is idle because no source was specified
2 Source is successfully loaded Used only with monitor and aux return

inputs. Not used with fader channels.
3 Can’t clear the channel because it is ON Used only with fader channels. Not used

with monitor and aux return inputs.
4 Can’t load the source because the channel is ON Used only with fader channels. Not used

with monitor and aux return inputs.
5 Not used anymore
6 Not used anymore
7 Can’t load the source because it is currently not active (no

advertisement)

8 Can’t load the source because the specified source profile ID
does not exist

9 Not used anymore
10 Can’t load the source because the channel is ON, and the

source is currently not active (no advertisement)
Used only with fader channels. Not used
with monitor and aux return inputs.

11 This is an interim state
12 This is an interim state
21 Source is loaded on fader in listen-only mode Used only with fader channels. Not used

with monitor and aux return inputs.
22 Source is acquired for full control and loaded on fader Used only with fader channels. Not used

with monitor and aux return inputs.
23 Source is acquired for full control and loaded on fader, but

failed to create the backfeed
Used only with fader channels. Not used
with monitor and aux return inputs.

24 Source is locked for full control elsewhere; it is loaded on
fader, but forced to listen-only mode

Used only with fader channels. Not used
with monitor and aux return inputs.

25 Source could not be locked for full control because of an
error; it is loaded on fader, but forced to listen-only mode

Used only with fader channels. Not used
with monitor and aux return inputs.

26 Source got unlocked after it was already loaded on fader; it
stays forced to listen-only mode

Used only with fader channels. Not used
with monitor and aux return inputs.

27 Source allocation request is pending – the source either
returned “free” status, or the response timed out

Used only with fader channels. Not used
with monitor and aux return inputs.

128 General source error. This is the common status for all kinds
of abnormal situations related to source data retrieval,
allocation status, owner ID mismatch, application procedure
or communication errors

129 Unrecognized source loading error. This is the common
status for all kinds of unrecognized abnormal situations
encountered during the attempt to load source.

130 Can’t clear the channel, reason unknown. Engine failed to
execute some of the commands that would clear the channel
settings, and no detailed error analysis is available.

Used only with fader channels. Not used
with monitor and aux return inputs.

LWCP for ZIP/ONE

General

Most of the protocol specification is inherited from the LWCP ver. 1.3 specification (link) . The remainder of this
document assumes you have read this.

The port used is 4010/TCP.

Syntax

Case Sensitivity
Messages are not case sensitive.

Data types
The ZIP/ONE only uses four data types. Their definitions are the same as in LWCP ver. 1.3

Type Description
#STRING Quoted string of characters.
#ENUM Predefined ASCII data which correspond to numbers. Enums are not quoted.
#NUMBER A floating point number or integer.
#ENCAP Data encapsulated inside of %BeginEncap% and %EndEncap%. Used for XML.
#NONE Property that is never associated with data.

System Properties

The ZIP/ONE supports the following universal system properties:
$ACK, $TRXI, $STATUS, $diag_code

TODO: Publish list of $diag_code values

Operations

The ZIP/ONE supports the following universal operations (see section 5 of LWCP ver. 1.3):
SET, GET, INDI, LOGIN, ACK, EVENT, SUB, UNSUB

It has one additional operation: ACTION.

Operation LOGIN

LOGIN works according to the LWCP ver. 1.3.

Example:
login unit user="user",pwd="" $ack $trxi="a1"
ack unit $status=OK $trxi="a1"

http://axia.lv/wiki/images/c/c3/LW_Control_Protocol_v13.pdf

Objects

Object Description Commands Allowed
SUPV Query status GET

ZIPServer All server related options SET,GET,SUB

Codec Codec related options SET GET,SUB

Audio Audio IO related options SET,GET,SUB

Phonebook All options related to buddies and buddylist SET,GET,SUB

Directory All options related to peer list handling GET,SUB

System System related options, i.e. Autoanswer SET,GET,SUB

Network Network related options SET,GET,SUB

Software Select the software bank, Reset to defaults SET,GET

Call Setting up a call to another unit ACTION

Drop Dropping a call ACTION

Loop Audio Loopmode ACTION

Object SUPV

The ZIP/ONE allows querying the SUPV object without logging in. Allows queries about the state of the
ZIP/ONE. Read only.

Property Type Description
state #STRING Returns “WORKING” if running, plus values for all other SUPV items
version #STRING Version of software that the ZIP/ONE is running
device_type #STRING Returns “ZIPOne”
hwversion #NUMBER Integer, 1=original, 2=AES/EBU version
callstate #ENUM Returns on of the current call status. See section about the action

Example:
get supv state

indi supv state="WORKING",version="1.9.0r",device_type="ZIPOne",hwversion=2

Object ZIPServer

Property Type Description
Name #STRING Name of the unit on the server
Group #STRING The group the unit should belong to on the ZIP server
GrpPwd #STRING The group password
Visibility #ENUM public, hidden
ZipServerName #STRING URL of server
ListenPort #NUMBER

Example: set ZIPServer name=”MyZIPOne”,group=”public”

Object Codec

Property Type Description
Profile #ENUM Preset coding profile: UserSetting, LowDelaySpeech, Speech,

LowDelayMusic, HighQuality

Mode #ENUM Encoding mode: aaceld, aache, aac, aacld, mp2aac, g711, g722, pcm16,
pcm20, pcm24, aptx

MinBitrate #NUMBER The minimum bitrate
MaxBitrate #NUMBER The maximum bitrate
RcvBufferMin #NUMBER The minimum receive buffer
RcvBufferMax #NUMBER The maximum receive buffer

Example: set codec mode=aaceld,minbitrate=”32000”,max bitrate=”128000”

Note that the combination of mode and bitrate might be adjusted from the ZIP/ONE since not all bitrates are
supported for each codec type.

Object Audio

Property Type Description
InputSource #ENUM Read only. analog, livewire, aesebu
InputSetting #ENUM analog, livewire, aesebu, livewireFO, aesebuFO

AnalogInLeft #ENUM line, mic, mic_phantom

AnalogInRight #ENUM line, mic, mic_phantom
MicGainL
MicGainR

#NUMBER Microphone gain for each channel. 015

MicGain #NUMBER Write only. Sets both MicGainL and MicGainR.
LineInGainL
LineInGainR

#NUMBER Range is same as for webpage variables and depends on hwversion:
 if (hwversion==1) range = 0..16; // Maps to 022.5 dB
 if (hwversion==2) range = 12..12; // Maps to 12..+12 dB

LineInGain #NUMBER Write only. Sets both LineInGainL and LineInGainR.
TransmitMode #ENUM stereo, mono

Example: set audio inputsource=livewire

Object Phonebook

Property Type Description
Buddylist #ENCAP <list>

 <buddy>
 <name>#CDATA</name>
 <group>#CDATA</group>

 <pwd>#CDATA</pwd>
 <nick>#CDATA</nick>
 <type>#CDATA</type>
 <panic>#CDATA</panic>
 <status>#CDATA</status>
 <redial>#CDATA</redial>
 </buddy>
 <buddy>
 …
 </buddy>
</list>
Get or set a complete buddy list

Buddylist #ENCAP <list>
 <buddyorg><name></name><goup></group></buddyorg>
 <buddynew>...</buddynew>
</list>
Change any attribute of the buddy by supplying name and group of the original inside
<buddyorg>. Set only the attributes which have to be changed inside <buddynew>. Add as
many buddyorgbuddynew pair as you need.

Buddylist #ENCAP <list><buddyrem><name></name><group></group></buddyrem>...</list>
Remove one or more buddies from the list, name, group and type are mandatory. You must not
supply any other item.

Buddylist #ENCAP <list><buddyadd><name></name><group></group>...</buddyadd>...</list>
Add one or more new buddies to the list. Name, group, pwd, nick, type are mandatory. If you do
not specify all items or specify nonmeaningful values defaults will be created.

Clear #NONE Clear phonebook

Options in red have been removed as of protocol version 1.4.

You must not combine the four different properties in a single message. Whenever the buddylist changes the
ZIP/ONE sends out an lwcp event message.

Example:
set phonebook buddylist=%BeginEncap%<list><buddy><name>”CallZip”</name></buddy>
</list>%EndEncap%

Object Directory

Property Type Description
Group #CDATA

Grppwd #CDATA

Wildcard #CDATA
Peerlist #ENCAP XML data, same format as buddylist

Example:
get directory peerlist group="public" grppwd="public" wildcard="*"

indi directory peerlist=%BeginEncap%<list><buddy><name>”CallZip”</name></buddy>
</list>%EndEncap%

Object System

Property Type Description
Autoanswer #ENUM on, off

DisplayContrast #NUMBER 019
FrontPanelSpeaker #ENUM off, keyclicks, clicks+melodies, sounds
RedialMode #ENUM off, x3, x10, forever
DisplayTimeout #ENUM never, 5sec, 1min, 10min, 1hr

RemPassword #STRING Password used for remote control of unit
NTPServer #STRING URL of NTP server
TimezoneHours #NUMBER Offset from UTC
DefaultStatusPage #ENUM last, overview, callstatus, codec, lan, wan, wifi, cdma

Object Software

Property Type Description
SelectBank #NUMBER 1 or 2 (SET only)
ResetDefaults #ENUM true. Reset ZIPOne to factory defaults (SET only)

Object Network

Property Type Description
WifiProt #ENUM none, wepstr, wephex, wpastr, wpahex

WifiSsid #STRING
WifiKey #STRING
WanIp #STRING Format: xxx.xxx.xxx.xxx
WanMask #STRING Format: xxx.xxx.xxx.xxx
WanGateway #STRING Format: xxx.xxx.xxx.xxx
WanDNS #STRING Format: xxx.xxx.xxx.xxx
WanDHCP #ENUM on, off

LanIp #STRING Format: xxx.xxx.xxx.xxx
LanMask #STRING Format: xxx.xxx.xxx.xxx
LanGateway #STRING Format: xxx.xxx.xxx.xxx
LanDNS #STRING Format: xxx.xxx.xxx.xxx
LanDHCP #ENUM on, off
CdmaCountry #ENUM usa, germany, southafrica, orange

CdmaDialNo #STRING
CdmaPin #STRING
CdmaProto #ENUM cdma, gprs

CdmaAccount #STRING
CdmaPassword #STRING

CdmaUrl #STRING URL
SipServer #STRING URL of SIP server/proxy
SipUser #STRING Username for SIP server
SipPwd #STRING Password for SIP server
SipPort #NUMBER TCP port on which to connect to SIP server
SipDomain #STRING SIP domain/realm
StreamIfc #ENUM Streaming interface: wan, lan, wifi, cdma
LwSrc #NUMBER Livewire source
LwDst #NUMBER Livewire destination
RouterMode #ENUM on, off
WebPort #NUMBER
RtpPushPort #NUMBER UDP port for recieving RTP push streams (0=disabled)
RtpRecip1 #ENUM on, off. Reply with G.722 if RTP stream is received on port 9151
RtpRecip2 #ENUM on, off. Reply with received stream mode if RTP stream is received on port 9152
RtpRecip3 #ENUM on, off. Reply with configured codec mode if RTP stream is received on port 9153

Object Call

Property Type Description
Client #ENCAP <buddy>

 <name>#STRING</name>
 <group>#STRING</group>
 <type>#STRING</type>
</buddy>

Example:
action call
client=%BeginEncap%<buddy><name>peer</name><group>public</group><type>tscp</typ
e></buddy>%EndEncap%

Object Drop
No attributes. Drop current call or does nothing.

A call setup can issue a number of INDI messages from the ZIP/ONE to any of the connected clients. The
ZIP/ONE will indicate the call setup and any call termination with a short string. Any indication message will
start with INDI call state=”#STRING” where #STRING is in the table below.

"peer called"

"incoming call accepted"

"rejected"

"disconnected"

"peer called"

"call setup proceeding"

"ringing remote"

"accepted"

"accept proceeding"

"disconnect accepted"

"disconnect proceeding"

"connected"

"idle"

"alerting"

"autoanswered”

To the idle state a reason for getting into this state is added:

"idle: disconnected"

"idle: not registered with server"

"idle: unknown peer"

"idle: unknown address"

"idle: peer in call"

"idle: rejected"

"idle: call setup over server timed out”

"idle: call setup timed out"

"idle: connection broke"

"idle: cdma failed"

"idle: unkown reason"

Object Loop

Property Type Description
Mode #ENUM off, pcm, encoded

Example: action loop mode=pcm

Protocol History

Version Software Date Author Notes
0.1 ??? 2012.07.26 M. Weishart First version
0.2 1.6.10b 2013.02.12 J. Bencin Reorganized and converted to gdoc

Eliminated URL as a data type
Changed data types of some properties
Changed RedialMode enums
Changed DisplayContrast to range 019
Added “System Properties” section
Added support for $ACK and $TRXI

0.3 1.7.0 2013.02.18 J. Bencin Added RtpPushPort and RtpRecip*
1.1 1.8.10 2013.09.13 J. Bencin Add aptX support
1.2 1.9.1 2013.10.23 J. Bencin Changes for AES/EBU version:

● Add get supv hwversion
● Add properties LineInGainL and LineInGainR

1.3 1.9.7 2013.11.20 J. Bencin Changes for failover:

● Make InputSource read only
● Add InputSetting with failover settings

1.4 2.0.24 2015.09.14 J. Bencin Remove broken commands from phonebook object
Add clear to phonebook object

1.5 3.0.16 2016.08.30 J. Bencin Add SipDomain

